• 제목/요약/키워드: Very High Resolution (VHR)

검색결과 14건 처리시간 0.02초

산불 발생 후 VHR 위성영상과 GIS 데이터를 이용한 산불 피해 지역 변화 탐지 (Wildfire-induced Change Detection Using Post-fire VHR Satellite Images and GIS Data)

  • 정민경;김용일
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1389-1403
    • /
    • 2021
  • 고해상도(Very High Resolution; VHR) 위성영상을 이용한 재난 피해 평가는 신속한 피해 정보 추출과 함께 세부적인 피해 정보 획득이 가능하다. 하지만 일반적으로 VHR 위성의 낮은 영상 취득 주기로 인해 재난 발생 전 VHR 영상의 수급은 제한적이며, 재난 발생 후 영상만으로는 피해 지역과 미피해 지역의 정확한 식별에 한계가 존재한다. 이에 본 연구에서는 산불 발생 후 VHR 위성영상과 GIS (Geographic Information System) 데이터를 이용하여 국내 산불 피해 지역에 대한 변화 탐지를 수행하였다. 산불 발생 전 VHR 영상을 대체하기 위한 GIS 데이터로는 토지피복도가 사용되었으며, 산불 발생 전 토지피복 현황에 대한 공간정보를 이용하여 산불발생 전 NIR (near-infrared) 영상을 시뮬레이션하였다. 변화 탐지 과정에서는 NDVI (Normalized Difference Vegetation Index) 상관도 기반의 변화 탐지 기법을 적용하였으며, superpixel 기반의 영상 분석을 통해 영상 분석의 복잡도를 감소시키는 동시에 VHR 영상의 디테일을 보존하고자 하였다. 제안 기법은 2019년 발생한 강원도 산불 지역에 대해 검증되었으며, 두 연구 지역에 대해 모두 98% 이상의 높은 전체 정확도와 0.97 이상의 높은 F1-score 값을 제시하였다.

고해상도 SAR 영상을 활용한 텍스처 기반의 도심지 변화탐지 기법 개발 및 평가 (Development and Evaluation of a Texture-Based Urban Change Detection Method Using Very High Resolution SAR Imagery)

  • 강아름;변영기;채태병
    • 대한원격탐사학회지
    • /
    • 제31권3호
    • /
    • pp.255-265
    • /
    • 2015
  • 고해상도 위성영상은 실시간으로 정확한 지표 상태에 대한 정보를 수집할 수 있어 도심지 모니터링에 효율적인 수단으로 사용되고 있다. 고해상도 Synthetic Aperture Radar (SAR) 영상은 기상상태와 태양고도의 제약을 받지 않고 영상을 취득할 수 있는 장점을 가지기 때문에 최근 이들 데이터를 활용한 도심지 변화탐지 기술에 대한 관심이 증대되고 있다. 본 연구에서는 Gray-Level Co-Occurrence Matrix (GLCM)을 통한 텍스처 정보추출과 이들 특징 정보를 통합적으로 활용하는 새로운 텍스처 기반의 SAR 변화탐지 기술을 제안하였다. 제안기법의 효용성을 평가하기 위해 기존의 SAR 영상 변화탐지를 위해 많이 사용된 Non-Coherent Change Detection (NCCD) 기법과의 시각적/정량적 비교평가를 수행하였다. 실험결과 제안기법이 보다 높은 변화탐지 정확도를 보였으며 시각적으로도 우수한 결과를 도출하였다. 결과적으로 제안된 변화탐지 방법은 고해상도 SAR 위성영상을 이용한 도심지 변화정보 추출에 유용하게 적용될 수 있으리라 판단된다.

등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록 (Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution)

  • 한유경
    • 한국측량학회지
    • /
    • 제35권3호
    • /
    • pp.125-132
    • /
    • 2017
  • IKONOS, QuickBird, Kompsat-2 등 서로 다른 고해상도 광학 센서로 취득된 다중시기 영상은, 취득 당시의 센서 자세나 환경의 차이에 의해 영상 등록(image registration)을 수행한 이후에도 여전히 지역적인 지형 불일치가 존재한다. 등록오차(registration noise)라고도 불리는 이러한 지형 불일치는 고해상도 다중시기 영상을 이용하여 공간정보를 추출하는 다양한 활용분야의 정확도를 떨어뜨리는 방해 요인으로 작용한다. 반대로, 등록오차를 추출하여 이를 효과적으로 제거한다면 결과적으로는 다중시기 고해상도 영상을 이용하여 추출되는 공간정보의 정확도를 높일 수 있다. 이에 본 연구에서는 지배적인 등록오차는 주로 영상 내 객체의 경계를 따라서 존재한다는 가정 하에, 경계강도 영상을 이용하여 등록오차를 추출한다. 추출된 등록오차의 지역적 분포특성을 고려하여 고해상도 영상 간 지형 불일치를 최소화하는 정밀 등록 기법을 제안한다. 제안 기법을 평가하기 위해, 고해상도 다중시기 광학위성 영상을 이용하여 실험지역을 구성한다. 등록오차 기반의 정밀 등록 기법 적용 결과와 수동으로 수행한 등록 결과와의 정량적/정성적 비교평가를 통해 제안 기법의 우수성을 판단하고자 한다.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

고해상도 영상 및 라이다 자료를 이용한 객체 기반 건물 탐지 (Object-based classification for building detection using VHR image and Lidar data)

  • 윤여상
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2006
  • 고해상도(VHR, Very High Resolution) 영상은 활용에 따라 도심의 다양한 정보를 얻을 수 있는 잠재적 가치가 매우 큰 자료이다. 그러나 이러한 고해상도 영상자료는 매우 높은 공간해상력으로 인해 같은 용도의 객체 혹은 같은 객체(예, 건물)라 할지라도 다양한 분광 특성 및 형태로 표현된다. 그러므로 이러한 고해상도영상을 이용하여 효과적으로 주제도를 생성하기 위해서는 현재까지 영상분류 분야에서 주로 활용되고 있는 화소(pixel)단위 기반의 분석방법으로는 한계가 존재한다. 본 연구에서는 이러한 문제점을 보완하기 위한 방법으로 활발한 연구가 진행되고 있는 세그멘트(segment) 혹은 객체(object) 기반 분류기법을 고해상도 영상 및 라이다 자료에 적용하여 도심지역의 건물들을 추출해 보았으며, 그 활용 가능성에 대하여 판단해 보았다. 이러한 세그멘트 기법은 분류하고자 하는 객체들을 하나의 동일한 특성을 가지는 집단으로 모으는 방법을 말하는데, 이를 위해 본 연구에서는 multi-resolution image segmentation기법을 제공해주는 eCognition이라는 소프트웨어를 이용하였다.

  • PDF

Quickbird 영상을 이용한 객체지향 및 ISODATA 분류기법기반 토지피복분류-세부레벨계획을 위한 비교분석 (Mapping of land cover using QuickBird satellite data based on object oriented and ISODATA classification methods - A comparison for micro level planning)

  • Jayakumar, S.;Lee, Jung-Bin;Heo, Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 춘계학술대회 논문집
    • /
    • pp.113-119
    • /
    • 2007
  • This article deals mainly with two objectives viz, 1) the potentiality of very high-resolution(VHR) multi-spectral and pan chromatic QuickBird satellite data in resources mapping over moderate resolution satellite data (IRS LISS III) and 2) the advantages of using object oriented classification method of eCognition software in land use and land cover analysis over the ISODATA classification method. These VHR data offers widely acceptable metric characteristics for cartographic updating and increase our ability to map land use in geometric detail and improve accuracy of local scale investigations. This study has been carried out in the Sukkalampatti mini-watershed, which is situated in the Eastern Ghats of Tamil Nadu, India. The eCognition object oriented classification method succeeded in most cases to achieve a high percentage of right land cover class assignment and it showed better results than the ISODATA pixel based one, as far as the discrimination of land cover classes and boundary depiction is concerned.

  • PDF

다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류 (Land cover classification of a non-accessible area using multi-sensor images and GIS data)

  • 김용민;박완용;어양담;김용일
    • 한국측량학회지
    • /
    • 제28권5호
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지 (Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise)

  • 정세정;김태헌;이원희;한유경
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.481-489
    • /
    • 2019
  • 다시기 위성 영상을 이용한 변화탐지 분석은 인간 활동의 변화를 직접 반영하는 지표이다. 변화탐지는 크게 화소 기반 변화탐지(PBCD: Pixel-Based Change Detection)와 객체 기반 변화탐지(OBCD: Object-Based Change Detection)로 구분한다. 화소 기반 변화탐지는 알고리즘이 간단하고 비교적 쉽게 정량적 분석이 가능해 전통적으로 많이 쓰여온 기법이나 고해상도 영상에서의 화소 기반 변화탐지는 오탐지나 노이즈(noise)가 발생하기 때문에 고해상도 영상에서의 활용도가 떨어진다. 또한, 고해상도 다시기 영상은 취득 당시 센서의 자세나 지형적 특성으로 인해 영상 등록(image registration)을 수행한 이후에도 지형적 불일치가 발생한다. 등록오차(registration noise)라고 불리는 이 지형 불일치는 고해상도 다시기 영상 활용을 위한 공간정보 추출 시 정확도를 떨어뜨리는 방해요인으로 작용한다. 이에 본 연구에서는 등록오차를 고려한 고해상도 영상의 객체 기반 변화탐지를 수행하였다. 이 때, 다양한 화소 기반 변화탐지 결과를 모두 고려한 객체 기반 변화탐지 결과를 도출하였으며 이 과정에서 분할 영상(segmentation image)과의 major voting을 적용하였다. 제안 기법과 화소 기반 변화탐지 결과, 그리고 화소 기반 변화탐지 결과를 객체 기반 변화탐지로 확장한 결과의 비교를 통해 제안 기법의 우수성을 평가하였다.

융합평가 지수에 따른 고해상도 위성영상 기반 변화탐지 정확도의 비교평가 (Comparison of Change Detection Accuracy based on VHR images Corresponding to the Fusion Estimation Indexes)

  • ;최석근;최재완;양성철;변영기;박경식
    • 대한공간정보학회지
    • /
    • 제21권2호
    • /
    • pp.63-69
    • /
    • 2013
  • 변화탐지 기법은 위성영상의 활용 및 국토 모니터링에 있어서 필수적인 알고리즘이다. 그러나, 변화탐지 기법을 고해상도 위성영상에 적용할 경우, 다시기 영상 간의 기하학적 차이 등에 의하여 변화탐지 정확도가 저하될 수 있다. 본 연구에서는 효과적인 위성영상의 변화탐지를 위하여 기존의 융합 영상 평가지수를 활용하고자 한다. 또한, 기존의 다시기 위성영상을 활용한 일반적인 변화탐지 기법과 교차융합영상을 이용한 변화탐지 결과를 비교하여, 다시기 고해상도 위성영상에 적합한 변화탐지 기법을 제안하고자 한다. 이를 위해, 융합영상 평가 지수인 ERGAS, UIQI, SAM를 무감독 변화탐지 기법에 적용하고 기존의 CVA를 이용한 변화탐지 기법의 결과와 비교하였다. 또한, 영상융합 기법에 따른 고해상도 위성영상 변화탐지 정확도를 평가하여 고해상도 위성영상의 무감독 변화탐지에서 발생할 수 있는 기하학적 오차를 최소화할 수 있는 방법을 분석하였다. 실험결과, 교차융합영상과 ERGAS 지수를 활용한 변화탐지 기법이 기존 기법과 비교하여 상대적으로 높은 변화지역 탐지 가능성을 가지는 것을 확인할 수 있었다.

개선된 개미 군집 최적화를 이용한 고해상도 위성영상에서의 객체 기반 도로 추출 (Object-Based Road Extraction from VHR Satellite Image Using Improved Ant Colony Optimization)

  • 김한세;최강혁;김용일;김덕진;정재준
    • 한국측량학회지
    • /
    • 제37권3호
    • /
    • pp.109-118
    • /
    • 2019
  • 도로 정보는 교통, 도시 계획, 지도 갱신, 위치기반서비스 그리고 GIS (Geographic Information System) 데이터 구축 등에 활용되는 중요한 기초 공간정보 자료이다. 따라서 정확한 도로 정보를 획득하고 이를 갱신하는 것은 다양한 공간정보 산업에 중요한 역할을 수행할 수 있다. 본 연구에서는 고해상도 위성영상에서 객체 기반의 도로 추출 기법으로 최근 소개된 개미 군집 최적화(ACO: Ant Colony Optimization)의 한계점을 분석하고 이를 개선하고자 하였다. 객체 기반의 ACO 도로 추출은 도로의 분광 및 형상 정보를 모두 활용하여 효과적으로 도로 추출을 수행할 수 있으나 객체 서술자 정보에 의존적이며 서술자 계산 시 사용자의 개입이 필요하다. 또한, 최적화 반복 종료 시점의 설정이 모호하다는 단점이 존재한다. 따라서 본 연구에서는 이를 개선하기 위해 기존 서술자의 한계를 보완하는 서술자와 최적화 반복 종료기준을 제안하였다. 제안된 방법은 기존의 알고리즘보다 52.51%의 완성도(completeness), 6.12%의 정확도(correctness), 51.53%의 품질(quality) 향상을 나타내었다.