• 제목/요약/키워드: Vertical whole-body vibration

검색결과 32건 처리시간 0.034초

수직 인체 모델을 이용한 건설 중장비 운전자의 전신진동 예측 (Prediction of Whole Body Vibration for CE Operatorsusing the Vertical Human Body Model)

  • 함정훈;김성환;박상규;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.516-517
    • /
    • 2013
  • Whole body vibration is very important for operators in construction equipment (CE) industry. There is ISO 2631 regulation to protect operators of CE. Recently WBV is one of critical performance parameters of CE to give operators much better comfortable working environment. And there are many kinds of numerically simplified human body model for the motor industry. We applied one human body model in ISO 5982 for the CE development at early stage. And we've checked the validity of this model to consider WBV by the operator comfort point of view.

  • PDF

수직방향 전신 충격진동의 불편함 평가를 위한 주파수가중곡선 개발 (Development of Frequency Weighting Shape for Evaluation of Discomfort due to Vertical Whole-body Shock Vibration)

  • 안세진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.658-664
    • /
    • 2006
  • Shock vibrations are usually experienced in vehicles excited by impulsive input, such as bumps. The frequency weighting functions of the current standards in ISO 2631 and BS 6841 are to help objectively predict the amount of discomfort of stationary vibration. This experimental study was designed to develop frequency weighting shape for shock vibration having various fundamental frequencies from 0.5 to 16Hz. The specks were produced from the response of single. degree-of-freedom model to a half-sine force input. Fifteen subjects used the magnitude estimation method to judge the discomfort of vertical shock vibration generated on the rigid seat mounted on the simulator. The magnitudes of the shocks, expressed in terms of both peak-to-peak value and un-weighted vibration dose values (VDVs) , were correlated with magnitude estimates of the discomfort. The frequency weighting shapes from the correlation were developed and investigated having nonlinearity due to the magnitude of the shock.

The Effects of Squat Exercises with Vertical Whole-Body Vibration on the Center of Pressure and Trunk Muscle Activity in Patients with Low Back Pain

  • Kang, Jeongil;Jeong, Daekeun;Choi, Hyunho
    • 국제물리치료학회지
    • /
    • 제11권4호
    • /
    • pp.2253-2260
    • /
    • 2020
  • Background: Patients with low back pain (LBP) experience misalignments in the center of pressure (COP) and muscle imbalances due to frequent onesided posture adjustments to avoid pain. Objectives: To identify the effects of Squat Exercises with Vertical Whole-Body Vibration on the Center of Pressure and Trunk Muscle Activity. Design: Randomized controlled trial. Methods: Thirty LBP patients with an imbalance in the COP were sampled and randomly assigned to an experimental group of 15 patients who under went an intervention involving squat exercises with vertical WBV and a control group of 15 patients who were treated via a walking intervention. As pretests before the interventions, the subjects' COP was identified by measuring their stability index (ST), and erector spinae, rectus abdominis, transverse abdominis, gluteus medius muscle activity was analyzed by determining the % reference voluntary contraction (%RVC) value using surface electromyography while sit to stand. After four weeks, a post test was conducted to remeasure the same variables using the same methods. Results: Statistically significant differences were found in the ST (P<.01) and trunk muscle (P<.05, P<.001) in the experimental group before and after the intervention. In terms of the differences between the left- and right-side (RL) muscle activity, only the transverse abdominis (TrA) and gluteus medius (GM) exhibited statistically significant increase (P<.05). A comparison of the groups showed statistically significant differences in the TrA with respect to muscle activity (P<.05) and in the RLTrA and RLGM in terms ofthe difference between left- and right-side muscle activity (P<.01). Conclusion: Squat exercises with vertical WBV produced effective changes in the COP of patients with LBP by reducing muscle imbalances through the delivery of a uniform force. In particular, strengthening the TrA and reducing an imbalance in the GM were determined to be important factors in improving the COP.

조종 숙련도 변화에 따른 심리적 리스크 이미지의 변화에 대한 평가 (Assesment on the Transformation of Psychological Risk Images due to Development of Flight Skills)

  • 김영관;임현교
    • 대한인간공학회지
    • /
    • 제22권1호
    • /
    • pp.57-67
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics. and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person. despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also. when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.

쇼크타입 수직방향 전신진동에 대한 생체동역학적 반응의 비선형성 (Nonlinearity of Biodynamic Response to Shock-Type Vertical Whole-Body Vibration)

  • 안세진;;유완석;정의봉
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.145-151
    • /
    • 2007
  • Impulsive excitation on vehicle produces shock-type vibration on the seat, which has major frequencies and damping ratios dependent on the characteristics of the suspension, the tire, the seat cushion and so on. The response of single degree of freedom model to a half-sine force input was considered as simple shock-type vibration signal. Quasi-apparent-mass for fifteen subjects was measured with the shock-type vibration generated on a rigid seat mounted on the simulator, so its nonlinearity was apparently found over 6.3 Hz according to the difference of magnitude of the shock.

한국인 앉은 자세에 대한 수직 진동 응답특성의 실험적 연구: (I) 겉보기 질량(Apparent Mass) (Experimental Investigation of the Response Characteristics of Korean-seated Subjects under Vertical Vibration : (I) Apparent Mass)

  • 정완섭;김영태;권휴상;홍동표
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.645-650
    • /
    • 2003
  • This paper introduces attempts to obtain the 'representative'characteristics of the apparent mass (or dynamic mass) of seated Korean subjects under vertical vibration. Individual responses of driving-oint apparent masses obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the characteristic responses of each subject. Those individual responses are used to estimate the 'mean'apparent mass, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated apparent mass are suggested and compared to those of ISO 5982.

물성치가 다른 시트에서의 인체 진동 측정 및 승차감 평가 (Human Response Measurement and Ride Quality Evaluation for Seats having various Material Porperties)

  • 조영건;박세진;윤용산
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.171-180
    • /
    • 2000
  • This paper deals with the whole-body vibration and ride quality evaluation in the vertical direction. The responses of the floor, hip, back, and head in four subjects were measured for various seats when the floor was excited by random vibration with r.m.s of 1.2m/s2 in the vertical direction. In the transmissibility between the hip and floor, the fundamental mode is observed at 4.4 Hz. In the transmissibility between the head and floor, the fundamental mode at 4.4Hz and the second mode at 7.6Hz are observed. It is shown that the head motion is 41% larger than the hip motion and the response of female subject is larger than that of male subject. The response without backrest also was compared with that with backrest. From these human responses ride quality of five seats were evaluated by the ride value such as transfer ration having frequency weighting function is the statistical sense. It is observed that the seat having high damping property can reduce the most acceleration exposed to hip in the statistical sense for all ride valves, while the seat having different seat spring doesn't show statistical difference.

  • PDF

승차감 평가를 위한 수직 방향의 인체 진동 모델 개발 (Development of Vertical Biomechanical Model for Evaluating Ride Quality)

  • 조영건;박세진;윤용산
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.269-279
    • /
    • 2000
  • This paper deals with the development of biomechanical model on a seat with backrest support in the vertical direction. Four kinds of biomechanical models are discussed to depict human motion. One DOF model mainly describes z-axis motion of hip, two and three DOF models describe z-axis of hip and head, and while nine DOF model suggested in this study represents more motion than the otehr model. Three kinds of experiments were executed to validate these models. The first one was to measure the acceleration of the floor and hip surface in z-axis, the back surface in x-axis, and the head in z-axis under exciter. From this measurement, the transmissiblities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer and the measurement of contact position between the human body and the seat by body pressure distribution. The third one was the measurement of the seat and back cushion by dummy. The biomechanical model parameters were obtained by matching the simulated to the experimental transmissiblities at the hip, back, and head.

  • PDF

쇽타입 수직방향 전신진동에 대한 주관적 안락감에 관한 연구 (STUDY OF SUBJECTIVE COMFORT ON SHOCK-TYPE VERTICAL WHOLE-BODY VIBRATION)

  • 안세진;;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1260-1264
    • /
    • 2006
  • Shock-type vibrations are usually experienced in vehicles excited by impulsive forces. Fifteen subjects used magnitude estimation to judge the discomfort of vertical shock-type vibration generated on a rigid seat. The shocks had different frequencies and magnitudes and were produced from the response of a 1 degree-of-freedom model to a half-sine force input. The magnitudes of the shocks, expressed in terms of both peak-to-peak value and un-weighted vibration dose values, VDVs, were correlated with magnitude estimates of the discomfort. In this study, equivalent comfort contour of shock-type vibration were obtained. From the contour, it was investigated that shock-type vibration at frequency below 0.8 Hz and between 4.0 Hz and 10.0 Hz is highly sensitive to the discomfort than at other frequencies.

  • PDF

한국인 앉은 자세에 대한 수직 진동 -응답특성의 실험적 연구 : (II) Mechanical Impedances (Experimental Investigation of the Response Characteristics of Korean -seated Subjects under Vertical Vibration: (II) Mechanical Impedances)

  • 정완섭;김영태;권휴상;홍동표
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.713-719
    • /
    • 2003
  • This paper introduces attempts to obtain the ‘representative’ characteristics of the mechanical impedance of seated Korean subjects under vertical vibration. Individual responses of driving-point mechanical impedance obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the responses of each subject. Those individual responses are used to estimate the ‘mean’ mechanical impedance, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated mechanical impedance are suggested and compared to those of ISO/DIS 5982.