• Title/Summary/Keyword: Vertical whole-body vibration

Search Result 32, Processing Time 0.026 seconds

Experimental investigation on the apparent mass during exposure to whole-body vertical vibration for Korean-seated postures (한국인 앉은 자세에 대한 수직방향의 전신진동 피폭에 대한 겉보기 질량의 실험적 연구)

  • 김영태;정완섭;윤용산
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.241-245
    • /
    • 2003
  • When considering the effects of whole-body vertical vibration, it is valuable to have an understanding of the mechanical characteristics (mechanical impedance and apparent mass) of the body. This paper addresses experimental results carried out to investigate the characteristics of apparent masses fer 41 Korean. The apparent masses of the seated human body in vertical direction were measured during different experimental conditions, such as vibration excitation level (0.5-2 ms$\^$-2/ r.m.s). frequency range (1-50Hz), and upper body posture (relaxed, normal and backrest-upright). We showed the average of all subjects and all conditions and compared the results with ISO5982/DIS (2000).

  • PDF

Physiological Approach on the Physical Fitness and Postural Balance Effects of a Whole-Body Vertical Vibration Intervention in Young Women

  • Ho, Chao-Chung;Sung, Hyun-Ho;Chen, Ming-Shu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.36-44
    • /
    • 2020
  • With the advent of westernized diet and a lack of exercise, young female college students are paying more attention to their bodyweight and health. Whole-body vibration has been demonstrated to be a suitable training method for improving knee extension maximal strength in young female athletes, as well as the gait performance in elderly women. This study aimed to evaluate the effects of a vertical vibration intervention on the physical fitness and postural balance in young females. Fifty-four young women were recruited; all subjects were randomly assigned to the intervention group and control group. The intervention group underwent vertical vibration with a platform for 12 weeks. The results showed that body mass index and body fat percentage had decreased (P<0.05). In addition, their muscle endurance as indicated by a sit-up test and their flexibility as indicated by a sit-and-reach test were both increased. With regard to postural balance, their 30-second sit-to-stand and timed up and go test results were improved. At the same time, their mean single-leg stance with eyes closed time increased (P<0.05). However, there were no significant differences, meanwhile, for the control group. Overall, the results showed that the whole body vibration (WBV) intervention had some beneficial effects on physical fitness and postural balance in young women.

A study on Whole Body Vibration in Subway System (지하철 전동차에서의 전신진동 특성에 관한 연구)

  • Jeong, Sang Wook;Park, Sang Kyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.87-98
    • /
    • 1997
  • In this study, subway train vibration has been measured to characterize the whole body vibration of Seoul subway lines for various human postures. Results show that the floor vibration level of the subway trains in the vertical direction is higher than that in other directions. At the standing human posture, vibration level of the head in the right-left direction are increased while that in the vertical direction is decreased. It is assumed that the different flexibility of the human body and the rolling motion of the subway trains are the main cause. At the sitting posture with back seat on, vibration level in the right and left direction at the human ischial tuberosities is lower than that in other directions. Results also show that there were little difference between back-seat on model and back-seat off model. Transmissibility analysis shows how the subway vibration affects the response of a human body.

  • PDF

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

Analysis of Equal Sensation Curves for the Korean People about Vertical Whole-Body Vibration (앉은 자세 수직축 전신 진동에 대한 한국인의 등감각 곡선 분석)

  • Kim, Kun-Woo;Kim, Min-Seok;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2010
  • In the field of 'Human Vibration', it has been interested subjects to make equal sensation curves related to translational and rotational direction of whole-body, hand-transmitted and head-transmitted vibration, etc. When we consider the vibration of a vehicle, the main factor is vertical whole-body vibration. Until now, most of equal sensation curves used to derive frequency weighting function had been made using Western people. However, because of the inherent differences (for example, characteristic and shape of body parts, muscular and cellular tissue) between the Western people and the Oriental people, equal sensation curves based on Oriental people might be required. Also, the weight differences between the samples which consist of average-weighted and over-weighted group might cause the difference of equal sensation curves. So, in this study, 20 male Korean people were used to find equal sensation curves subject to vertical whole-body vibration on seated posture. Among 20 males, an over weighted group consisted of 10 male persons and an average weighted group was the others. Integrating and analyzing the data of two groups, some of non-parametric tests such as 'The Wilcoxon Signed Rank Test' and 'The Mann Whitney U test' were used.

The effect of whole body vibration on lower joints in vertical jump (전신진동운동이 수직점프 시 하지관절에 미치는 영향)

  • Yi, Jae-Hoon
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.513-518
    • /
    • 2016
  • The Mechanisms of whole body vibration on the human body is not clearly presented despite of the research result and there is not enough research that shows the effects of vibration on the kinetic changes of the lower joint. Therefore, this study focuses on finding out which lower joint is related with kinetic vertical jump ability. Five male and five female who didn't have orthopedic history were selected as the subjects. The subjects carried out three squat jumps before and after 5minutes of 30Hz whole body vibration. We have utilized a 3D motion analysis system to analyze the kinetic changes of the lower joint in the vertical jump. The height of subjects squat jump was improved after whole body vibration treatment. Also, the lower joint moment and power increased. However, there were no statistically significant changes in GRF, hip joint moment and power after the whole body vibration proved to have positive effect on the ankle and knee joints but showed negative effect on the hip joint.

Mathematical Model Development of Whole-body Vertical Vibration, Using a Simulated Annealing Method (Simulated Annealing 기법을 이용한 인체 수직 전신 진동 모델의 파라미터 선정)

  • Choi, Jun-Hee;Kim, Young-Eun;Baek, Kwang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.381-386
    • /
    • 2000
  • Simple spring-damper-mass models have been widely used to understand whole-body vertical biodynamic response characteristics of the seated vehicle driver. However, most previous models have not considered about the non-rigid masses(wobbling masses). A simple mechanical model of seated human body developed in this study included the torso represented by a rigid and a wobbling mass. Within the 0.5-20Hz frequency range and for excitation amplitudes maintained below $5ms^{-2}$, this 4-degree-of-freedom driver model is proposed to satisfy the measured vertical vibration response characteristics defined from a synthesis of published data for subjects seated erect without backrest support. The parameters are identified by using the combinatorial optimization technique, simulated annealing method. The model response was found to be provided a closer agreement with the response characteristics than previously published models.

  • PDF

Experiment for Seated Human Body to Vertical/Fore-and-aft/Pitch Excitation (착석자세 인체의 상하/전후/피치 가진 시험)

  • Kim, Jong-Wan;Kim, Ki-Sun;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.656-660
    • /
    • 2009
  • Various dynamic models of seated posture human body have been developed because the importance about the ride comfort assessment of vehicles is highly emphasized from day to day. The dynamic models of human body make possible the simulation of ride comfort assessment by applied to the vehicle dynamic model. Recently, the importance of ride comfort is also regarded to working vehicles such as excavators and the research of the ride comfort assessment for working vehicle is required. Only vertical vibration dominantly occurs on the seat of the private car driving with constant velocity. In contrast, vertical/fore-and-aft/pitch vibration seriously occurs on the seat of the working excavator. So, the dynamic models of seated human body applied to working vehicles should describe the dynamic characteristics for vertical/fore-and-aft/pitch direction. In this paper, the dynamic characteristics of seated human body are represented as apparent inertia matrix. The apparent inertia matrix is obtained by the vertical/fore-and-aft/pitch excitation of seated human body. 6 resonance frequencies are observed in apparent inertia matrix. This result can be applied to develop the dynamic model for seated posture human body.

  • PDF

Six-axis Biodynamic Response to Vertical Whole-body Vibration (수직방향 진동에 대한 인체의 6축 방향 반응특성분석)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.218-223
    • /
    • 2011
  • Seated human subjects have been exposed to vertical vibration so as to investigate six-axis biodynamic response. Sixteen males were exposed to random vertical vibration in the frequency range(3~40Hz) at one vibration magnitude(0.224m/$s^2$ r.m.s.). Forces were measured in the vertical, fore-and-aft, lateral, roll, pitch and yaw direction on the seat. The median of cross-axis apparent mass magnitude in the fore-and-aft direction could reach up to 20% of the apparent mass magnitude at resonance frequency. And the median of apparent eccentric mass magnitude in the roll direction could reach up to 15% of the apparent eccentric mass magnitude in the pitch direction at resonance frequency. But cross-axis apparent mass in the lateral direction and apparent eccentric mass in the yaw direction showed very small.

  • PDF

A Study of Mathematical Human Modeling of Sitting Crew during Whole-body Vibration (해상 근무 승무원의 수학적 전신진동 해석 모델에 관한 연구)

  • Kim, Hee-Seok;Kim, Hong-Tae;Park, Jin-Hyoung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics, and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person, despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also, when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.