• Title/Summary/Keyword: Vertical wear(V0)

Search Result 2, Processing Time 0.014 seconds

An Analysis of the Rail Wear Measurements for the Prediction of Particulate Matter Emission in Urban Railway (도시철도 미세먼지 발생량 예측을 위한 레일 마모량 분석)

  • Yoon, Cheonjoo;Ko, Huigyu;Bang, Myeongseok;Kwon, Hyeokbin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.339-350
    • /
    • 2018
  • The rail wear measurements in urban underground railway have been analyzed to predict the particulate matter emission caused by rail wear which is one of the major sources of particulate matter emission for underground railway systems. From the rail profile variations measured in the interval of one and half year by dedicated rail wear measuring instrument over the commercial urban underground railway line, 'line-s' which is about 45km long, the characteristics as well as the amount of rail wear have been analyzed after dividing the whole line into about 170 section with radius of curve(R). It has been concluded that the vertical wear parameter V0 and corner wear parameter C0 have been selected to represent the wear amount of straight and curved rail respectively. The amount of rail wear as well as the particulate matter emission by rail wear over the whole line normalized by the rail length as well as the number of train has also been deduced from the relationship between the rail wear parameters and the amount of rail cross-section area.

Measurement of Saw-Teeth Wear by TALYSURF (TALYSURF에 의한 톱니의 마모량측정)

  • Hyun, Jung-Ihn;Klamecki, Barney E.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.22-27
    • /
    • 1980
  • Quantitative assessment of edge blunting of saw-teeth was carried out by TALYSURF. 1. Using the following equation, the real shape of a saw-tooth can be traced on the graph of TALYSURF. ${\frac{{\Delta}h}{h}}={\frac{V{\Delta}_x}{V_x}}$ {${\Delta}h$: vertical distance of stylus h: vertical distance in chart $V{\Delta}_x$: Velocity of stylus $V_x$: velocity of chart} 2. As shown on Fig 2, the error from stylus itself can be calculated by following equation. i) 13.8${\mu}{\leqq}$x<20.4${\mu}$ y=-0.2246x+4.59${\mu}$ ii) 0${\leqq}$x<13.8${\mu}$ y=${\sqrt{(-18{\mu})^2-x^2}}-1.42x+32.7{\mu}}$ 3. The relationship between profile of saw-tooth and error from stylus itself can be calculated by following equation. $E(%)=\frac{f(r){\times}{\frac{4}{18{\mu}}}}{f(R){\times}{\frac{R}{18.5{\mu}}}-f(r){\times}{\frac{r}{18{\mu}}}}{\times}100$ {E(%)${\frac{error\;of\;stylus}{dullness\;of\;saw\;tooth}}{\times}100$ r: radius of stylus tip R: radius of tip which is drawn in graph of talysurf f(r) : error of stylus f(R) : dullness of tip which is drawn in graph of talysurf} 4. The graph of maximum error and profile of saw-tooth was parabola.

  • PDF