• Title/Summary/Keyword: Vertical through-flow

Search Result 317, Processing Time 0.038 seconds

A Study of Vertical Circulation System in General Hospitals by Using Space Syntax (공간구문론을 이용한 종합병원 수직동선체계 연구)

  • Lee, Hyunjin;Park, Jaseung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.19 no.4
    • /
    • pp.47-60
    • /
    • 2013
  • Purpose: This study examines construction core plans for the users of vertical-typed general hospitals to effectivly use the flow line. Methods: The study sampled representative 9 hospitals, calculated the depth value through Convex Map of Space Syntax and Justified Graph according to the determination of form of construction cire, and analyzed its functional connectivity. Results: The analysis of the connectivity between operation core part and emergency part of core space with high importance in the hospitals showed that the types of hospital and hospital have the lowest depth value in the spatial phase diagram, where central treatment part and outpatient part are arranged well vertically. Elevators for patients at these hospitals are close to operation and emergency parts actually separated from the elevators for passengers. For shortening of flow line of patients and private movement environment, however, it is desirable to arrange the elevators for patients to be adjacent to the operation parts and to arrange the emergent patient entrances more effectively to separate them from the flow line of visitors and guardians. Implications: Consideration should be taken into account for the effective flow line design. This study hopefully may serve as a stepping stone for the standard design of horizontal/vertical flow line.

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Density-surfactant-motivated removal of DNAPL trapped in dead-end fractures

  • 여인욱;이강근;지성훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.51-54
    • /
    • 2003
  • Three kinds of experiments were conducted to test existing methods and develop an effective methodology for the remediation of DNAPL trapped in vertical dead-end fractures. A water-flushing method failed to remove TCE from vertical dead-end fractures where no fluid flow occurs. A water-flushing experiment implies that existing remediation methods, utilizing water-based remedial fluid such as surfactant-enhanced method, have difficulty in removing DNAPL trapped from the vertical downward dead-end fractures, because of no water flow through dead-end fractures, capillary, and gravity forces. Fluid denser than TCE was injected into the fracture network, but did not displace TCE from the vertical dead-end fractures. Base(B on the analysis of the experiments, the increase in the density of the dense fluid and the addition of surfactant to the dense fluid were suggested, and this composite dense fluid with surfactant effectively removed TCE from the vertical dead-end fractures.

  • PDF

A Numerical Study on the Influence of the Horizontal Gap upon the Cavitation Behavior of a Horn Type Rudder (혼-타의 수평틈새가 캐비테이션에 미치는 영향에 관한 수치적 연구)

  • Seo, Dae-Won;Lee, Seung-Hee;Kim, Hyo-Chul;Oh, Jung-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Recently, as container ships become larger and faster, rudder cavitations are more frequently observed near the gap between the horn and rudder plates of the ships to cause serious damages to the rudder surface of the ship. The authors already have suggested through a series of model experiments and numerical computations that employment of an appropriate blocking device for gap flow may retard the gap cavitation. For examples, a cam device installed near the outer edges of the vertical gap or a water-injection device combined with a pair of half-round bars installed inside the gap can considerably reduce the gap cavitation. However, it is also found that effective blocking of the flow through the vertical gap results in growth of the cavitation near the horizontal gap instead. In the present study, effectiveness of the simultaneous blocking of the flow through the horizontal and vertical gaps of a horn type rudder in minimizing the damage by gap cavitation is studied. Additional blocking disks are inserted inside the horizontal gaps on the top and bottom of the pintle block and numerical computations are carried out to confirm the combined effect of the blocking devices.

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

Two-Phase Flow Distribution and Phase Separation Through Both Horizontal and Vertical Branches

  • Tae, Sang-Jin;Keumnam Cho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1211-1218
    • /
    • 2003
  • The present study investigated two-phase flow distribution and phase separation of R-22 refrigerant through various types of branch tubes. The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), mass flux (200-500 kg/㎡s), and inlet quality (0.1-0.4). The predicted local pressure profile in the tube with junction was compared and generally agreed with the measured data. The local pressure profile within the pressure recovery region after the junction has to be carefully investigated for modeling the pressure drop through the branch. The equal flow distribution case can be found by adjusting the orientation of the inlet and branch tubes and the diameter ratio of the branch tube to the inlet tube. The T-junction with horizontal inlet and branch tubes showed the nearly equal phase distribution ratio. The quality at the branch tube varied from 0 to 1 as the orientation of the branch tube changed, while it varied within${\pm}$50% as the orientation of the inlet tube changed.

Prediction of Supersonic Jet Impingement on Flat Plate and Its Application (초음속 충돌제트에 대한 수치적 연구와 응용)

  • Lee K. S.;Hong S. K.;Park S. O.;Bae Y. S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.225-228
    • /
    • 2002
  • Supersonic jet impingement on a flat plate has been investigated to show the flow physics for different jet heights and to demonstrate the adequacy of the characteristics-based flux-difference Wavier-Stokes code Current study also compares the steady-state solutions obtained with variable CFL number for different grid spacing with the time-accurate unsteady solutions using the inner iterations, displaying a good agreement between the two sets of numerical solutions. The unsteady nature of wall fluctuations due to bouncing of the plate shock is also uncovered for high pressure ratios. The methodology is then applied to a complex vertical launcher system where the jet plume hits the bottom wail, deflects into the plenum and eventually exits through the vertical uptake. Flow structures within vertical launcher system are captured and solutions are partially verified against the flight test data. Present jet impingement study thus shows the usefulness of CFD in designing a complex structure and predicting flow behavior within such a system.

  • PDF

Experimental Study of Solid-water Slurry Flow in Vertical Pipe (수직관내 고-액 슬러리 유동 계측 실험연구)

  • Choi, Jong-Su;Hong, Sup;Yang, Chan-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.160-163
    • /
    • 2001
  • In order to develop a nodule conveying system through a flexible pipe out of the deep-seabed manganese nodule miner, an experimental study of the solid-water slurry flow in vertical pipe is performed as the first stage of total experiments. Hydraulic characteristics of the pipe slurry flow such as slip velocity, transport concentration and pressure gradient are investigated for the size of particle, load ratio, and flow rate of water. The higher the load ratio is, the larger the transport concentration and pressure gradient become. The bigger the size of particles is, the larger the pressure gradient becomes. The effectiveness of the flow rate to hydraulic performance is also investigated. This results are to be used for designing crusher and pump, and operating the conveying device.

  • PDF

A temperature adjustment process of stratified fluid induced simultaneously by sidewall thermal variation and vertical through-flow (용기의 온도변화와 수직관류가 동시에 작용하는 성층유체의 과도유동)

  • Park, Jun-Sang;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.450-455
    • /
    • 2001
  • An analytical study is made of transient adjustment process of an initially stationary, stably-stratified fluid in a square. The boundary walls are highly-conducting. The overall Rayleigh number $R_a$ is large. Considerations are given to both opposing (${\delta}w/{\delta}T>0$) and cooperating (${\delta}w/{\delta}T<0$) configurations. The flow character in opposing configuration can be classified into (a) a forced-convection dominaut mode (${\delta}w/{\delta}T>1/\sqrt{2}$), (b) a buoyancy-convection dominant mode ($0<{\delta}w/{\delta}T<1/\sqrt{2}$), and (c) a static mode (${\delta}w/{\delta}T{\cong}1/\sqrt{2}$). Global evolutionary processes are depicted. and physical rationalizations are provided.

  • PDF

A Study on the Flow Characteristics of Rectangular Prism with Center Gap Through-flow at Different Aspect Ratio (중앙틈새를 관통하는 흐름을 갖는 사각형상 물체의 변장비에 따른 유동특성에 관한 연구)

  • Kim, Jin-Gu;Cho, Dae-Hwan;Han, Sang-Gook
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.25-30
    • /
    • 2011
  • Flow control of flow field is essential to design efficient elements relating to fluid machineries. In this study, flow characteristics of rectangular prism with center gap through-flow at different aspect ratio was investigated to flow control. It was used a FLUENT 6.3 version to study flow field. It was found that the through-flow disturbs the development of vertical velocity component and decreased the vortex size and critical value of a rapid change in pressure coefficient distribution.