• 제목/요약/키워드: Vertical temperature difference

Search Result 261, Processing Time 0.034 seconds

Quantitative Analysis of the Thermal Front in the Mid -eastern Coastal Area of the Yellow Sea (황해 중부 연안 수온전선역의 정량적 해석)

  • Choi, Hyun-Yong;Lee, Sang-Ho;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The hydrographic data collected at three different times July, 1994, May, 1995 and June, 1996 around Taean peninsula in the mid-Yellow Sea off Korea, well known for the well-defined surface thermal fronts in summer, were analyzed. In the vertically well-mixed area where water depths varied from 15 m depth to 60 m depth, the temperature difference in the water column was less than $1^{\circ}C$. The temperature observed in the vertically well-mixed area was reversely related with the water depths and the coldest surface water was always observed over the deep channel with the depth of more than 50m, which developed southwestward off the promontory of Taean peninsula, irrespective of the observation period. The strengths of surface thermal front observed in June were much stronger than those in July, even though the surface temperature of stratified area were nearly the same as in July. These observed features could be explained as follows: A major physical process for the formation of the surface thermal front is the vertical mixing of water column but the detailed thermal structure in the study area depend on the physical parameters such as the water depth in the vertically well-mixed side and the vertical thermal structure in the stratified side.

  • PDF

Vertical Distribution of Vascular Plants in Namdeogyusan, Mt. Deogyu National Park by Temperature Gradient (덕유산국립공원내 남덕유산 관속식물의 고도별 온도구배에 따른 수직분포)

  • Kim, Jung-Hyun;Kim, Sun-Yu;Park, Chan-Ho;Lee, Byoung Yoon;Yun, Jong-Hak
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.651-680
    • /
    • 2015
  • In order to investigate vertical plant distribution on Namdeogyu of Mt. Deogyu National Park by temperature change, vascular plants of nine areas with 100-meter-high difference were surveyed from the Deogsangyo (650m alt.) to the Namdeogyusan (1,507m alt.). A total of 455 taxa belonging to 99 families, 280 genera, 402 species, 5 subspecies, 43 varieties, 4 forms and 1hybrid were vegetated on survey areas. Around 700 m high did species diversity of vascular plants decrease rapidly. The Detrended correspondence analysis (DCA) divided distribution of vascular plants into five groups; areas below 700m alt., 700~1,100m alt., 1,100~1,300m alt., and areas above 1,300m alt.. These results showed that vegetation of vascular plants on investigated areas has high correlation with climate elements of temperature. Vascular plants should be crowded within their own optimal ranges of vegetation. Climate change would result in shift of these distribution ranges, and thus vegetation shift will be happened accordingly.

Vertical Distribution of Vascular Plants in Osaek valley, Seoraksan National Park by Temperature Gradient (설악산국립공원 오색계곡 관속식물의 고도별 온도구배에 따른 수직분포)

  • Yun, Jong-Hak;Kim, Jung-Hyun;Kim, Sun-Yu;Park, Chan-Ho;Lee, Byoung-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.2
    • /
    • pp.156-185
    • /
    • 2012
  • In order to investigate vertical plant distribution on Osaek valley of Mt. Seorak by temperature change, vascular plants of fourteen areas with 100-meter-high difference were surveyed from the Osaekgyo(345m alt.) to the Daecheongbong(1708m alt.). A total of 449 taxa belonging to 94 families, 279 genera, 397 species, 5 subspecies, 45 varieties, and 2 forma were vegetated on survey areas. Around 500 m high did species diversity of vascular plants decrease rapidly. The Detrended correspondence analysis(DCA) divided distribution of vascular plants into five groups; areas below 500m alt., 500~900m alt., 900~1400m alt., 1,400~1,600m alt., and areas above 1,600m alt.. These results showed that vegetation of vascular plants on investigated areas has high correlation with climate elements of temperature. Vascular plants should be crowded within their own optimal ranges of vegetation. Climate change would result in shift of these distribution ranges, and thus vegetation shift will be happened accordingly.

Vertical Distribution of Vascular Plants in Jungsanri, Mt. Jiri by Temperature Gradient (지리산 중산리계곡 관속식물의 고도별 온도구배에 따른 수직 분포)

  • Yun, Jong-Hak;Kim, Jung-Hyun;Oh, Kyoung-Hee;Lee, Byoung-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.680-707
    • /
    • 2010
  • In order to investigate vertical plant distribution on Jungsanri of Mt. Jirisan by temperature change, vascular plants of fourteen areas with 100-meter-high difference were surveyed from the Jungsan bridge(348 m alt.) to the Jangteumog(1653 m alt.). A total of 440 taxa belonging to 104 families, 287 genera, 385 species, 7 subspecies, 42 varieties, and 6 forma were vegetated on survey areas. Around 700 m high did species diversity of vascular plants decrease rapidly, but foreign species were not found. The Detrended correspondence analysis(DCA) divided distribution of vascular plants into five groups; areas below 500m alt., 500~600m alt., 600~1000m alt., 1000~1200m alt., and areas above 1200m alt.. These results showed that vegetation of vascular plants on investigated areas has high correlation with climate elements of temperature. Vascular plants should be crowded within their own optimal ranges of vegetation. Climate change would result in shift of these distribution ranges, and thus vegetation shift will be happened accordingly.

Oscillatory Motion of Natural Convective Flow in Partially Divided Square Enclosure (수평격판을 갖는 4각형 밀폐공간내에서 자연대류의 진동유동)

  • 김점수;정인기;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1963-1970
    • /
    • 1992
  • An oscillatory motion of the natural convection in a two dimensional, partially divided square enclosure heated from below, and fitted with a partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the mid-height of the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were performed with the variation of the length and the thermal conductivity of the partition, and Rayleigh number based on the temperature difference between horizontal walls and the enclosure height with water(Pr=4.95). also, the effect of the inclination angles was studied for the transition to the oscillating flow. As the results, it was found that the intensity and frequency of oscillatory motion were affected significantly by the Rayleigh number and the length of partition. The effect of oscillatory motion was weaken with the increase of the thermal conductivity of partition. The inclination angle for the transition was raised with the increase of Rayleigh number and the length of partition.

A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics (유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구)

  • Lee, Tae-Jin;Lee, Soon-Hwan;Lee, Hwawoon
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

Changes in Growth Characteristics of Seven Foliage Plants Grown in an Indoor Bio-Wall System Depending on Irrigation Cycle

  • Han, Cheolgu;Shim, Ie-Sung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.179-189
    • /
    • 2020
  • In order to increase the indoor air purification effect of plants, plants need to be placed on 5-10% of indoor spaces. To increase the density and utilization of plants in indoor spaces, studies on bio-wall, a vertical green wall system, have been recently conducted. The purpose of this study was to investigate the growth characteristics of 7 indoor plants introduced to the system and their rooting zones at different irrigation cycles. This study was conducted to investigate a proper irrigation cycle for the continuous maintenance of bio-wall systems. The conditions of their growth environment were maintained as follows: light intensity, 20-50 μmol·m-2·s-1 PPFD; and temperature, 20 - 25℃. For fertilization, Hyponex diluted with water at the ratio of 1:1,000 was supplied to plants. Irrigation was treated at intervals of 1, 3, 5, and 7 days for 1 hour at a time. As a result, there was no significant difference in the growth of plants between different irrigation cycles. Dieffenbachia 'Marianne' showed a significant decrease in the number of leaves at the irrigation cycle of 7 days. In addition, the chlorophyll content was relatively low at the irrigation cycle of 7 days. In terms of the color of leaves, a decrease in L value and b value and an increase in a value were observed, resulting in changes in brightness and color. Ardisia pusilla 'Variegata' showed a slightly higher photosynthetic activity and stomatal conductance when it was watered every day and once per 5 days, while Epipremnum aureum showed a relatively higher photosynthetic activity and stomatal conductance at the irrigation cycle of 3 days. In the case of root activity, it was found that the longer irrigation cycle, the higher root activity compared to daily irrigation. The development of roots of Peperomia clusiifolia was promoted by watering at long intervals. However, in the case of Aglaonema 'Siam-Aurora', the total number of roots decreased at the interval of 7 days. In conclusion, a proper irrigation cycle for the sustainable maintenance of vertical bio-wall systems seems to be 3 days.

Effect of Cable Tension Changes on Track Irregularity of Railway Ballasted Track on Railway Steel Composite Bridge (케이블 장력변화가 강철도 복합교량 상 자갈궤도의 궤도틀림에 미치는 영향)

  • Jung-Youl Choi;Soo-Jae Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.633-638
    • /
    • 2023
  • In this study, the effect of the change in cable tension on the track irregularity of railway ballasted track on a railway steel composite bridge was analyzed. As a result of comparing design and analysis results for cable tension, a difference of less than 3% was found, and analysis modeling was analyzed to reflect the design conditions well. In addition, the adequacy of the analysis modeling was demonstrated by comparing the field measurement results with the analysed cable tension. By considering the change in cable tension as a variable, the track irregularity of the railway steel composite bridge was analyzed. As a result of the analysis, it was analyzed that the total and one-sided cable tension change had a direct effect on the vertical irregularity among the track irregularity items. In addition, it was found that the change in track irregularity occurred in the section close to the cable position. It was analyzed that the change in cable tension had a more direct effect on track irregularity that had a direct correlation with the vertical direction rather than the lateral direction.

Analysis of Stratified Lake using an Eddy Diffusion and a Mixed-Layer Models (와확산 및 혼합층 모델을 이용한 성층화 호수 해석)

  • 김경섭
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.235-244
    • /
    • 1996
  • A one-dimensional eddy diffusion model and a mixed-layer model are developed and applied to simulate the vertical temperature profiles in lakes. Also the running results of each method are compared and analyzed. In an eddy diffusion model, molecular diffusivity is neglected and eddy diffusivity which does not need lake-specific fitting parameter and constant lake's level are applied. The heat exchanges at the water surface and the bottom are formulated by the energy balance and zero energy gradient, respectively. In a mixed-layer model, two layers approach which has a constant thickness is adopted. Application of these models which use explicit finite difference an Runge-Kutta methods respectively demonstrates that the models efficiently simulate water temperatures.

  • PDF

Robust Optimum Design of Resonance Linear Electric Generator for Vehicle Suspension (차량 노면 진동을 이용한 공진형 선형 발전기 시스템의 강건최적설계)

  • Choi, Ji Hyun;Kim, Jin Ho;Park, Sang-Shin;Seo, TaeWon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.403-407
    • /
    • 2014
  • To use vibration energy to generate electricity, a resonance vertical linear electric generator was applied to the suspension of a vehicle in a previous paper. However, the working conditions, including mass change in the vehicle body related to the cargo on board, number of passengers and the temperature difference caused by the operating environment, can influence the permanent magnet, which is the main component of the electric generator. Therefore, a robust optimum design is required to minimize the influences from the diverse operation conditions and maximize the electromotive force of the electric generator. In this paper, a resonance linear electric generator is introduced. Vibration response analysis to find the input velocity of the electric generator and an electromagnetic transient analysis to apply changes in the performance of the permanent magnet are performed. Finally, the optimum value of each design variable is derived using a Taguchi method.