• Title/Summary/Keyword: Vertical scaling

Search Result 71, Processing Time 0.018 seconds

Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The vertical distributions of aerosol extinction coefficient were estimated using the scaling height retrieved at Gwangju, Korea ($35.23^{\circ}N$, $126.84^{\circ}E$) during a spring season (March to May) of 2009. The aerosol scaling heights were calculated on a basis of the aerosol optical depth (AOD) and the surface visibilities. During the observation period, the scaling heights varied between 3.55 km and 0.39 km. The retrieved vertical profiles of extinction coefficient from these scaling heights were compared with extinction profile derived from the Light Detection and Ranging (LIDAR) observation. The retrieve vertical profiles of aerosol extinction coefficient were categorized into three classes according to the values of AODs and the surface visibilities: (Case I) the AODs and the surface visibilities are measured as both high, (Case II) the AODs and the surface visibilities are both lower, and (Others) the others. The averaged scaling heights for the three cases were $3.09{\pm}0.46km$, $0.82{\pm}0.27km$, and $1.46{\pm}0.57km$, respectively. For Case I, differences between the vertical profile retrieved from the scaling height and the LIDAR observation was highest. Because aerosols in Case I are considered as dust-dominant, uplifted dust above planetary boundary layer (PBL) was influenced this discrepancy. However, for the Case II and other cases, the modelled vertical aerosol extinction profiles from the scaling heights are in good agreement with the results from the LIDAR observation. Although limitation in the current modelling of vertical structure of aerosols exists for aerosol layers above PBL, the results are promising to assess aerosol profile without high-cost instruments.

A study on live vertical scale-up in a cloud environment (클라우드 환경에서의 무중단 수직 확장에 관한 연구)

  • Jun-Seok Park;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.70-81
    • /
    • 2022
  • In this paper, we proposed a Virtual Machine Placement (VMP) method to provide live vertical scaling services for cloud resources. Since free space on the physical server must be secured in advance for vertical scaling, a "general-mixed-vertical" mode conversion algorithm based on the FirstFit placement strategy that variably adjusts the allocation ratio of virtual servers to physical servers for this purpose is presented. Simulations were performed using parameters such as vertical scaling ratio, virtualization ratio, and free resource ratio. When the vertical scaling ratio is 50%, considering free space, 150% of resources are required as a whole, but simulation results of the proposed algorithm show that only up to 125% of free space is required.

Scaling Down Characteristics of Vertical Channel Phase Change Random Access Memory (VPCRAM)

  • Park, Chun Woong;Park, Chongdae;Choi, Woo Young;Seo, Dongsun;Jeong, Cherlhyun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • In this paper, scaling down characteristics of vertical channel phase random access memory are investigated with device simulator and finite element analysis simulator. Electrical properties of select transistor are obtained by device simulator and those of phase change material are obtained by finite element analysis simulator. From the fusion of both data, scaling properties of vertical channel phase change random access memory (VPCRAM) are considered with ITRS roadmap. Simulation of set reset current are carried out to analyze the feasibility of scaling down and compared with values in ITRS roadmap. Simulation results show that width and length ratio of the phase change material (PCM) is key parameter of scaling down in VPCRAM. Thermal simulation results provide the design guideline of VPCRAM. Optimization of phase change material in VPCRAM can be achieved by oxide sidewall process optimization.

A Study of CaSO4 Scale Formation and Heat Transfer in a Vertical Tube Evaporator (수직 증발관에서 CaSO4 Scale 형성과 열전달에 관한 연구)

  • Hong, Choonkeun;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1363-1370
    • /
    • 1999
  • A study of scaling and heat transfer has been carried out for a vertical tube evaporator in which $CaSO_4$ saturated water flows upward. Experimental apparatus including vacuum chambers and heaters has been designed and manufactured to study scaling phenomena for three different pressures(1atm, 0.27atm and 0.16atm). Overall heat transfer coefficients have been measured and shown to decrease with time as scaling proceeds. After the end of experiments, the vertical tube has been cut to measure the thickness of scale at different heights. Below the height where the bulk fluid temperature does not reach saturated temperature, the thickness of scale increases, however, beyond that height occurring saturated condition, the thickness does not vary much or even decreases a little. The measured fouling resistances also support these variations of scale thickness.

Study on Scaling Analysis and Design Methodology of Passive Injection Test Facility (피동 주입 시험 장치의 척도 해석 및 설계 방법론 연구)

  • Bae, Hwang;Lee, Minkyu;Ryu, Sung-Uk;Shin, Soo Jai;Kim, Young-In;Yi, Sung-Jae;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.50-60
    • /
    • 2016
  • A design methodology of the modeled test facility to conserve an injection performance of a passive safety injection system is proposed. This safety injection system is composed of a core makeup tank and a safety injection tank. Individual tanks are connected with pressure balance line on the top side and injection line on the bottom side. It is important to conserve the scaled initial injection flow rate and total injection time since this system can be operated by small gravity head without any active pumps. Differential pressure distribution of the injection line induced by the gravity head is determined by the vertical length and elevation of each tank. However, the total injection time is adjustable by the flow resistance coefficient of the injection line. The scaling methodology for the tank and flow resistance coefficient is suggested. A key point of this test facility design is a scaling analysis for the flow resistance coefficient. The scaling analysis proposed on this paper is based on the volume scaling law with the same vertical length to the prototype and can be extended to a model with a reduced vertical length. A set of passive injection test were performed for the tanks with the same volume and the different length. The test results on the initial flow rate and total injection time showed the almost same injection characteristics and they were in good agreement with the design values.

Modeling and Optimization of $sub-0.1\;{\mu}m$ gate Metamorphic High Electron Mobility Transistors ($0.1\;{\mu}m$ 이하의 게이트 길이를 갖는 Metamorphic High Electron Mobility Transistor의 모델링 및 구조 최적화)

  • Han Min;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we analyzed the DC and RF characteristics of $0.1\;{\mu}m$ metamorphic high electron mobility transistor (MHEMT) using the ISE-TCAD simulation tool. we also analyzed the effects or the scaling on vertical and lateral dimensions such as a gate length, source-drain spacing, and channel thickness. We discussed the degradation of extrinsic transconductance $g_{m,max}$ in the MHEMTs adopting the gate length $(L_g)$ of $sub-0.1\;{\mu}m$. We suggested the model describing the effects on the vertical and lateral parameter scaling.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Development of scaling approach based on experimental and CFD data for thermal stratification and mixing induced by steam injection through spargers

  • Xicheng Wang;Dmitry Grishchenko;Pavel Kudinov
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1052-1065
    • /
    • 2024
  • Advanced Pressurized Water Reactors (APWRs) and Boiling Water Reactors (BWRs) employ a suppression pool as a heat sink to prevent containment overpressure. Steam can be discharged into the pool through multi-hole spargers or blowdown pipes in both normal and accident conditions. Direct Contact Condensation (DCC) creates sources of momentum and heat. The competition between these two sources determines the development of thermal stratification or mixing of the pool. Thermal stratification is of safety concern as it reduces the cooling capability compared to a completely mixed pool condition. In this work we develop a scaling approach to prediction of the thermal stratification in a water pool induced by steam injection through spargers. Experimental data obtained from large-scale pool tests conducted in the PPOOLEX and PANDA facilities, as well as simulation results obtained using validated codes are used to develop the scaling. Two injection orientations, namely radial injection through multi-hole Sparger Head (SH) and vertical injection through Load Reduction Ring (LRR), are considered. We show that the erosion rate of the cold layer can be estimated using the Richardson number. In this work, scaling laws are proposed to estimate both the (i) transient erosion velocity and (ii) the stable position of the thermocline. These scaling laws are then implemented into a 1D model to simulate the thermal behavior of the pool during steam injection through the sparger.

An Experimental Study on the Effect of the Balcony on the Vertical Smoke Movement of the High Rise Building (고층건물의 수직방향 연기거동에 미치는 발코니의 영향에 관한 실험적 연구)

  • Yang Seung-Shin;Kim Sung-Chan;Ryou Hong-Sun;Shim Sang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.42-48
    • /
    • 2005
  • The present study investigates the effect of balcony on external smoke movement of high rise building through the fire tests of the 1/10 reduced model scale using Froude scaling. A hexane pool fire is used to examine the smoke movement for various opening sizes of balcony and temperature distributions are measured by T-type thermocouples. Also, hydrogen bubble technique is applied to visualize the smoke movement near the balcony. Measured temperatures of the closed balcony is 2.5 times higher than those of the open balcony because the external smoke in case of the closed balcony rise along the vertical wall. The maximum vertical temperature of partially closed balcony is similar with fully closed balcony and mean temperature inside of balcony increases as opening size of balcony decreases. The experimental results show that the balcony space plays an important roles in preventing fire propagation and cooling of smoke layer. In order to ensure the fire safety in high rise building design, a series of systematic researches are required to examine the various type of balconies.

A Conceptual Two-Layer Model of Thermohaline Circulation in a Pie-Shaped $\beta$-Plane Basin

  • Park, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The three dimensional structure of thermohaline circulation in a D-plane is investigated using a conceptual two layer model and a scaling argument. In this simple model, the water mass formation region is excluded. The upper layer represents the oceans above the main thermocline. The lower layer represents the deep ocean below the thermocline and is much thicker than the upper layer. In each layer, geostrophy and the linear vorticity balance are assumed. The cross interfacial velocity that compensates for the deep water mass formation balances downward heat diffusion from the top. From the above relations, we can determine the thickness of the upper layer, which is the same as thermocline depth. The results we get is basically the same as that we get for an f-plane ocean or the classical thermocline theory. Mass budget using the velocity scales from the scaling argument shows that western boundary and interior transports are much larger than the net meridional transport. Therefore in the thermohaline circulation, horizontal circulation is much stronger than the vertical circulation occuring on a meridional plane.