• 제목/요약/키워드: Vertical profile observations

검색결과 23건 처리시간 0.026초

VERTICAL OZONE DENSITY PROFILING BY UV RADIOMETER ONBOARD KSR-III

  • Hwang Seung-Hyun;Kim Jhoon;Lee Soo-Jin;Kim Kwang-Soo;Ji Ki-Man;Shin Myung-Ho;Chung Eui-Seung
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.372-375
    • /
    • 2004
  • The UV radiometer payload was launched successfully from the west coastal area of Korea Peninsula aboard KSR-III on 28, Nov 2002. KSR-III was the Korean third generation sounding rocket and was developed as intermediate step to larger space launch vehicle with liquid propulsion engine system. UV radiometer onboard KSR-III consists of UV and visible band optical phototubes to measure the direct solar attenuation during rocket ascending phase. For UV detection, 4 channel of sensors were installed in electronics payload section and each channel has 255, 290, 310nm center wavelengths, respectively. 450nm channel was used as reference for correction of the rocket attitude during the flight. Transmission characteristics of all channels were calibrated precisely prior to the flight test at the Optical Lab. in KARI (Korea Aerospace Research Institute). During a total of 231s flight time, the onboard data telemetered to the ground station in real time. The ozone column density was calculated by this telemetry raw data. From the calculated column density, the vertical ozone profile over Korea Peninsula was obtained with sensor calibration data. Our results had reasonable agreements compared with various observations such as ground Umkhr measurement at Yonsei site, ozonesonde at Pohang site, and satellite measurements of HALOE and POAM. The sensitivity analysis of retrieval algorithm for parameters was performed and it was provided that significant error sources of the retrieval algorithm.

  • PDF

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • 한국지구과학회지
    • /
    • 제23권1호
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

X-밴드 이중편파 레이더에 의한 밝은 띠 탐지 (Bright band detection using X-band polarimetric radar)

  • 이동률;장봉주;황석환;노희성
    • 한국수자원학회논문집
    • /
    • 제53권12호
    • /
    • pp.1211-1220
    • /
    • 2020
  • 본 연구에서는 소형 X-밴드 이중편파 레이더의 수평반사도 (ZH), 차등반사도(ZDR), 교차상관계수(ρHV)의 RHI(range height indicator) 연직단면과 PPI (plan position indicator)의 고도각 경사거리(slant range) 빔의 프로파일 분석을 통하여 밝은 띠(bright band, BB)의 특성을 탐색하였다. 분석 결과, X-밴드 레이더의 이중편파 변수들을 이용하여 밝은 띠 영역을 명확히 탐지할 수 있었으며, 동시간대의 RHI 및 PPI 관측 자료를 이용한 이중적인 밝은 띠 영역을 탐색하여 그 결과가 일치함을 확인하였다. 이 결과를 토대로 현업에서 RHI 관측없이 PPI 볼륨관측만 수행하는 대형 강우레이더에도 본 연구의 PPI 고도각 경사거리에 의한 BB 탐색 방법을 적용함으로써 QPE (quantification of precipitation estimation)의 정확성을 향상시킬 수 있다.

돕슨 분광광도계(No.124)의 오존 자동관측시스템화 (Automation of Dobson Spectrophotometer(No.124) for Ozone Measurements)

  • 김준;박상서;문경정;구자호;이윤곤;;조희구
    • 대기
    • /
    • 제17권4호
    • /
    • pp.339-348
    • /
    • 2007
  • Global Environment Laboratory at Yonsei University in Seoul ($37.57^{\circ}N$, $126.95^{\circ}E$) has carried out the ozone layer monitoring program in the framework of the Global Ozone Observing System of the World Meteorlogical Organization (WMO/GAW/GO3OS Station No. 252) since May of 1984. The daily measurements of total ozone and the vertical distribution of ozone amount have been made with the Dobson Spectrophotometer (No.124) on the roof of the Science Building on Yonsei campus. From 2004 through 2006, major parts of the manual operations are automated in measuring total ozone amount and vertical ozone profile through Umkehr method, and calibrating instrument by standard lamp tests with new hardware and software including step motor, rotary encoder, controller, and visual display. This system takes full advantage of Windows interface and information technology to realize adaptability to the latest Windows PC and flexible data processing system. This automatic system also utilizes card slot of desktop personal computer to control various types of boards in the driving unit for operating Dobson spectrophotometer and testing devices. Thus, by automating most of the manual work both in instrument operation and in data processing, subjective human errors and individual differences are eliminated. It is therefore found that the ozone data quality has been distinctly upgraded after automation of the Dobson instrument.

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

정상 염수쇄기의 형상과 흐름 장의 물리적 특성 (The Physical Characteristics of the flow field and the Form of Arrested Salt Wedge)

  • 이문옥
    • 한국해양학회지
    • /
    • 제25권2호
    • /
    • pp.62-73
    • /
    • 1990
  • 장방형 단면의 개수로를 사용하여 정상 염수쇄기가 존재하는 흐름 장의 유동특성 을 파악하기 위한 실험을 수행하였다. 염수쇄기는 전체적으로 매우 안정하여 목시 관측이 용이하였으나, 유속의 측정과 계면파의 관측에는 가시화수법을 이용하였다. 연 직방향의 밀도변화로부터 정의되는 밀도계면은 목시관측에 의한 계면의 대략 0.5 cm정 도 아래에 존재하였으며, 밀도분포는 Hlomboe 모델을 잘 만족하였다. 계면층은 난류강 도 (turbulent intensity)가 매우 극심한 영역으로서 그 두께는 총평균 Richardson수 가 증가함에 따라 감소하는 경향을 보였으며 상층의 약 16% 정도의 크기를 가졌다. 수 로의 횡단면상의 유속분포는 수로측변에 의한 마찰의 영향을 잘 반영하였고, 상층내에 서는 Reyonolds수가 커질수록 연직방향의 유속분포의 균질성이 증가하는 반면 하층은 대체로 방물형(parabolic type)에 가까운 분포를 보였다. 염수쇄기를 쇄기장(L/SUB o/)에 따라 하구부(x/L/SUB o/< 0.3,단 x는 하구로부터의 거리), 중앙부(0.3 0.7) 의 세 구간으로 나누어 생각하는 경우, 연행계수는 중앙부에서 작고 하구부와 선단부에서 크게 나타났다. 또한 하구부나 중앙부는 계면이 대체로 안정하여 내부표면장력파가 팔생하거나 전파하는 반면, 선단부는 매우 불안정 하여 cusping ripple 또는 bursting ripple과 같은 계면파가 발생하였다. 염수쇄기의 형상은 거의 진선적으로, densimetric Froude 수와 Reynolds 수와는 독립이었다.

  • PDF

조석출입량에 관한 조사 (Study of the Tidal Discharge)

  • 최귀열
    • 한국농공학회지
    • /
    • 제10권1호
    • /
    • pp.1394-1408
    • /
    • 1968
  • The tidal discharge is defined as the quantity of water flowing through a certain cross-section per unit of time, in contrast to river discharges, tidal discharges change periodically in magnitude and direction. Thus the total volumes of water flowing into again out of the system-called flood volume and ebb volume, respectively, depend on both the tidal and the river discharges. To ditermine the tidal discharge and the flood and ebb volumes of the Yong-san river, the discharges were measured at spring, mean and neap tide and simultaneous gage reading were taken at Samhak-do, Lower Myo-do, Myongsan-ni and Naju. The general procedure for measuring the tidal discharges was as follows. First, several cross-sections were measured and one of them was chosen. First, several cross-sections were measured and one of them was chosen. Then verticals were serected in the chosen cross section. Because comparatively few verticals should be representative of the discharge distribution over the river profile, the selection was done in accordance with the somtimes irregular bottom profile. The velocities were measured with the same current meters. The observations which included water level readings were continued for a period of about 13 hours. The current direction meter, a pyramid shaped resistance body, suspend in the water on a thin wire. The bubble in a circular tilting level fixed to the wire indicates the direction of the current. Reading were taken at intervals of 1m for depths of 10m or less, and for depths over 10m at intervals of 2m, going downwards and upwards. The averages of the two velocities were used for the computation of the discharges. The discharges and the flood and ebb volumes were ditermined by a graphical method. The mean velocities, corrected for their direction when necesary, were ditermined for each time interval and each vertical, and these velocities were plotted against the time. The resulting curves show possible mistakes very clearly, and the effect of observation errors could be reduced. The corrected velocities read from the curve at half-hour intervals were multiplied by the depth at the virtical at the corresponding time. The discharges thus found were ploted against the position of the vertical in the transit and joined by a smooth curve, integration of the curve rendered the total discharges as they occurred of half-hour intervals. Plotting these total discharges against the time yeilded during the day. The flood and ebb volumes were obtained by integration of the total discharge curve.

  • PDF

기온감률의 일중 경시변화 예측 가능성 (Feasibility of the Lapse Rate Prediction at an Hourly Time Interval)

  • 김수옥;윤진일
    • 한국농림기상학회지
    • /
    • 제18권1호
    • /
    • pp.55-63
    • /
    • 2016
  • 경계층 내에서는 일중 시간대에 따라 기온감률의 변이가 크므로, 복잡지형의 기온분포 추정에 흔히 사용되는 표준기온감률보다 현실성 있는 매시 기온감률 추정 방법을 고안하였다. 이 방법에서는 기온 경시변동의 장기간 평균을 기준으로 하되, 표준등압면 1000-925hPa 층위의 기온감률을 이용하여 기온감률 표준곡선을 작성하고, 여기에 매시 운량에 따라 보정된 기온감률이 모의된다. 신뢰성 검증을 위해 대관령 지역에 적용하여 10개월 간 매시 기온감률을 추정하고 그 결과를 초음파 기온프로파일러로부터 얻은 지상 500-600m 층위 실측 기온감률과 비교한 결과, ME $-0.0001^{\circ}C/m$, RMSE $0.0024^{\circ}C/m$였다. 이 방법을 지상 1.5m에서 측정되는 산사면의 고도별 기온감률 추정에 적용할 수 있는지 확인하기 위해 복잡지형인 '하동2수위표' 표준유역의 313-401m 고도구간 매시 기온감률을 계산하였다. 해당 유역 산사면 여러 지점으로부터 실측기온을 얻어 기온감률을 구한 다음 추정값과 비교한 결과 대관령의 연직 프로파일에 비해 오차가 컸지만 하늘상태에 따른 일중 기온감률의 변동경향은 이 방법에 의해 모의할 수 있었다.

서해 제부도 해역의 간조시 갯벌 퇴적층내 지온 및 열수지의 계절변화 (Seasonal Variations of the Heat Flux in Muddy Intertidal Sediments near the Jebu Island during the Ebb Tides in the West Coast of Korea)

  • 나정열;유승협;서장원
    • 한국해양학회지:바다
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2000
  • 한국 서해안 제부도 갯벌에서 낮 동안에 일어난 간조시에 갯벌층의 수직적인 지온을 측정하였다. 갯벌층의 지온측정은 온도계 프로브를 통해 2cm 간격으로 18cm 층까지 계절별로 5회 실시하였다. 갯벌층 지온의 시간적 변화는 주로 대기온도, 측정전의 만조시간과 간조시간에 의해 좌우된다. 갯벌표면(0~2cm)에서의 열수지의 크기는 깊은 퇴적층(8~12cm)보다 크게 나타났으며 시간적인 변화는 반대양상을 보였고 계절적인 변화는 나타나지 않았다. 일반적으로 갯벌표층은 열이득을, 깊은 퇴적층에서는 열전도에 의한 열손실을 보이고 있다. 1차원 확산방정식에 의해 계산된 시간적인 온도 변화를 측정된 지층온도와 비교하였다. 4cm 이하 퇴적층에서 열이동은 주로 분자확산에 의해 나타났다. 낮동안 갯벌층이 대기에 노출되는 간조시의 0~18cm 퇴적층에서 열수지의 평균값은 $4.1{\sim}28.9\;W/m^2$ 범위이다.

  • PDF