• Title/Summary/Keyword: Vertical pipe flow

검색결과 105건 처리시간 0.018초

네팔 Modi Khola 수력발전소 수리모형실험 연구 (A Study on the Hydraulic Experiments of Modi Khola Hydroelectric in Nepal)

  • 선우중호;박창근
    • 물과 미래
    • /
    • 제28권1호
    • /
    • pp.107-120
    • /
    • 1995
  • 본 연구는 네팔의 Modi Khola 강 유역에 건설되는 Modi Khola 수력발전소의 취수구 구조물 및 침사지 구조물에 대한 수리모형실험 연구이다. 취수구 구조물은 축척이 1:20인 정상모형으로, 침사지 구조물은 수직방향 축척이 1:10, 수평방향 축척이 1:15인 왜곡모형으로 제작되었다. 본 실험에서는 이동상 모형이론에 의해 'Anthracite'($\rho_s$ =1.48)를 모형사로 선택하였다. 실험결과 취수구 구조물 부분에서는 세사영역의 유사퇴적을 막기 위해 적정한 높이의 guide wall 설치가 바람직하며, 효율적 배사를 위해 배사수문의 적절한 조작이 필요한 것으로 나타났다. 침사지 구조물 부분에서는 효율적인 침사를 위해 침사지내의 난류호흡을 억제시키는 설계가 요구되었고, 침사지내 퇴사를 처리하기 위하여 설치된 유출구측의 배사 파이프는 침사지 전영역의 배사를 효율적으로 수행하지 못하였으므로 최대 퇴사가 발생하는 지점 근처에 추가로 배사 파이프를 설치하는 것이 바람직하다. 또한 침사효율은 평균 약 95%로 관측되었는데, 비교적 좋은 침사지 설계라 판단된다.

  • PDF

댐의 심층저온수 취수시 수온 성층화 유지 조건에 대한 CFD를 이용한 분석 (Analysis of the Water Temperature Stratification-Maintaining Conditions Using CFD in Case of Intake of Deep, Low-Temperature Water)

  • 이진성;조수;심경종;장문성;손장열
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.31-38
    • /
    • 2009
  • This study was conducted to forecast inner water temperature strata change by extracting deep water from a dam. For the methodology, the scope wherein the balance between the volume of low-temperature water intake through the virtual water intake opening as installed within the stored water area and the volume of water intake from the surrounding area is not destroyed was calculated through the CFD simulation technique using the computational fluid dynamics(CFD) interpretation method. This study suggested a supplementary method(diffuser) to avoid destroying the water temperature strata, and the effect was reviewed. In case of intake of the same volume, when the velocity of flow of water intake is reduced by increasing the pipe diameter, the destruction of water temperature strata can be minimized. When the area(height) where the intake of water is possible is low, a diffuser for interrupting the vertical direction inflow should be installed to secure favorable water intake conditions in case of water intake on the upper part. This study showed that there was no problem if the intake-enabled, low-temperature area was secured approximately 10m from the bottom when the scope that does not destroy the water temperature strata in case of water intake was forecast using the regression formula.

지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구 (Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion)

  • 김영호;김호연;김연삼;유승경;한중근
    • 한국지반신소재학회논문집
    • /
    • 제16권4호
    • /
    • pp.231-240
    • /
    • 2017
  • 최근 도심지에서 인적, 물적 피해를 초래하여 경제적 손실을 수반하는 지반함몰이 빈번히 발생하고 있다. 이는 노후화된 상하수관거의 파손으로 인한 토사유실, 다짐불량, 수평굴착, 수직굴착시 토류벽 차수미흡 등 인위적 요인에 의하여 대다수 발생한다. 지반함몰은 탐사를 통하여 사전 복구 및 보강을 통해 예방이 가능하지만 현존하는 공법으로는 긴급복구에 적용하기에 어려움이 있다. 본 연구에서는 비개착식 지반공동 긴급복구 기술 개발을 위해 지하수흐름에 의한 지중 내 공동을 모사하는 모형실험을 진행하였으며, 조성된 공동 주변을 자체제작한 이완영역탐지기를 이용하여 탐지하므로써 이완영역 범위를 추정하였다. 또, 모사지반내 형성된 공동에 석고를 주입함으로써 교란영역과 이완영역을 구분하였다. 지하수 흐름에 의한 지중 공동의 형상은 선행연구 되었던 상수관거 파손시 내부 압력에 의해 조밀한 상대밀도의 지반에서 조성된 파괴모드III와 유사하였으며, 이완영역탐지기를 이용하여 탐지된 공동은 상부에서 아칭형태로 형성됨을 확인 할 수 있었다. 또한, 지반에서 공동 중심 상부에서 이완영역과 교란영역의 길이비는 2:1로 형성되며, 외력에 대한 전단저항력의 감소의 차이인해 구분될 수 있음을 확인하였다. 즉, 사전보수 및 보강시 주입재로 사용되는 재료의 팽창성을 고려하여 2차 피해가 발생되지 않도록 주의해야함을 확인 할 수 있었으며, 추후 추가적인 실험을 통하여 다양한 지반변형 상태를 추가로 실시할 예정이다.

설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011)

  • 한화택;이대영;김서영;최종민;백용규;김수민
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012)

  • 한화택;이대영;김사량;김현정;최종민;박준석;김수민
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.