• Title/Summary/Keyword: Vertical pipe flow

Search Result 105, Processing Time 0.023 seconds

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Experimental Study of Solid-water Slurry Flow in Vertical Pipe (수직관내 고-액 슬러리 유동 계측 실험연구)

  • Choi, Jong-Su;Hong, Sup;Yang, Chan-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.160-163
    • /
    • 2001
  • In order to develop a nodule conveying system through a flexible pipe out of the deep-seabed manganese nodule miner, an experimental study of the solid-water slurry flow in vertical pipe is performed as the first stage of total experiments. Hydraulic characteristics of the pipe slurry flow such as slip velocity, transport concentration and pressure gradient are investigated for the size of particle, load ratio, and flow rate of water. The higher the load ratio is, the larger the transport concentration and pressure gradient become. The bigger the size of particles is, the larger the pressure gradient becomes. The effectiveness of the flow rate to hydraulic performance is also investigated. This results are to be used for designing crusher and pump, and operating the conveying device.

  • PDF

Experimental Study on Flow Patterns and Pressure Drop Characteristics of Ice Slurry in Small Size Pipe (2) (소구경 배관내 아이스슬러리의 유동형상 및 압력강하 특성에 관한 실험적 연구(2))

  • 이동원;윤찬일;주문창
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.391-397
    • /
    • 2002
  • Pressure drop were experimentally investigated for ice slurry flowing in the acrylic pipes with inner diameter of 24 mm. Ice slurry was made from 6.5% ethylene glycol-water solution, and the pipes is consisted of horizontal, vertical (upward and downward) and $90^{\circ}$ elbow pipe. The ice Packing factor (IPF) and the flow rate of the experiments were varied from 0 to 30% and from 5 to 70kg/min respectively The measured pressure drop in various pipe positions were compared with those for the solution flow (IPF=0). The pressure drop was larder than that for solution flows as the IPF increased when the flow rate was low or very high. Sharp increases in pressure drop were observed for the cases when IPF is more than 70% in horizontal and vertical pipes, whereas the pressure drop increased with the IPF simultaneously in an elbow pipe.

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

Characteristics of Two-Phase Flow in Vertical Pipe (수직관에서의 이상유동 특성)

  • Bae, B.M.;Sim, W.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.879-882
    • /
    • 2004
  • Two-phase flow exists in many industrial components. Characteristics of two-phase flow have been studied by many researchers; however, a further study of the two-phase is required for flow-induced vibration. Characteristics of two-phase flow were measured by force sensor at the end of a vertical pipe. The predominant frequency of fluctuation was obtained for various speeds of flow pattern. A correlation to slug frequency for horizontal flow was obtained by Heywood & Richardson (1979), while Legius et al (1997) for vertical flow. A coefficient based on the correlation is estimated and then compared to the existing ones. The existing empirical formulations for average void fraction were proposed by Wallis (1969), Zuber et al (1967) and Ishii (1970). In the present result, flow parameters, such as flow quality and real velocity, are evaluated with void fraction.

  • PDF

Study on Laminar Mixed Convection of Developing Flow in Vertical Pipe (수직관내 발달 유동의 층류혼합대류 연구)

  • Ko, Bong-Jin;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2010
  • Experiments on laminar mixed convection in a vertical pipe were performed for the Re range 1,000-3,000, the $Gr_H$ range $10^5-10^8$, the Pr range 2,000-7,000, and aspect ratio range 1-7. Using the analogy concept, heat transfer systems were simulated by mass transfer systems. A cupric acid.copper sulfate electroplating system was adopted as the mass transfer system, and the mass transfer rates were measured. The measured Nu values were far greater than those previously reported because of the large value of pr in this experiment. As the aspect ratio in this study was not sufficiently large for the flow to be fully developed, the test results were similar to those for mixed convection on a vertical plate rather than that inside a long vertical pipe. It was concluded that the behavior of laminar mixed convection of a developing flow in a vertical pipe at a low aspect ratio and low $Gr_H$ is similar to that of laminar mixed convection in the vertical plate. As the aspect ratio and $Gr_H$ increase, the laminar mixed convection phenomena becomes similar to that observed in a fully developed flow in the vertical pipe.

Experimental Studies on Swirling Flow in a Vertical Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.907-913
    • /
    • 2011
  • Swirling flows are related to the spiral motion in the tangential direction in addition to the axial and radial direction using several swirl generators. These type of flows are used in combustion chambers to improve flame stability, heat exchanger to enhance heat transfer coefficients, agricultural spraying machines and some vertical pipes to move slurries or transport of materials. However, only a few studies three dimensional velocity profiles in a vertical pipe have been reported. In this present paper, 3 dimension particle image velocimetry(PIV) technique was employed to measure the velocity profiles in water along a vertical circular pipe with Reynolds number from 6000 to 13,000. A tangential inlet condition was used as the swirl generator to produce the required flow. The velocities were measured with swirling flow in the water along the test section using the PIV technique.

The Effect of Flow Patterns with Polymer Additivies From Two Phase Flow at Vertical up Ward in Circular Tube (원관내 수직상향 2상유동에서 고분자물질이 유동양식에 미치는 영향)

  • 김재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.505-514
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure void fraction and channel geometry. We classify the flow pattern by measuring the output signal of the conductivity probe. under the classified flow pattern we mount a visualization equipment on the test section and take pictures. We vary the concentration of pure solvent and polymer to measure local void fraction. We know that the maximum point position of local void fraction distribution move from the center of the pipe to the wall of the pipe as JSL increase when JSA is constant in two phase flow. But we find that the maximum point position of local void friction move from the wal of the pipe to the center of the pipe when polymer concentration increase.

  • PDF

Gravitational Effect on Eigenvalue Branches and Flutter Modes of a Vertical Cantilevered Pipe Conveying Fluid (유체 이송 연직 외팔 송수관의 고유치분기와 플러터 모드에 미치는 중력 효과)

  • Ryu Si-Ung;Shin Kwang-Bok;Ryu Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.67-74
    • /
    • 2006
  • The paper presents gravitational effect on eigenvalue branches and flutter modes of a vertical cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the related numerical solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratios of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

Heat Transfer Correlations for Air-Water Two-Phase Flow of Different Flow Patterns In a Horizontal Pipe

  • Kim, Dongwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1711-1727
    • /
    • 2001
  • Heat transfer coefficient were measured and new correlations were developed for two-phase heat transfer in a horizontal pipe for different patterns. Flow patterns were observed in a transparent circular pipe (2.54 cm I. D. and L/D=96) using an air/water mixture. Visual identification of the flow patterns was supplemented with photographic data and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air-water heat transfer experimental data with good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.

  • PDF