• 제목/요약/키워드: Vertical distribution pattern

Search Result 236, Processing Time 0.026 seconds

A THREE DIMEMSIONAL PHOTOELASTIC STRESS ANALYSIS OF IMPLANT SUPPORTING BONE TISSUE ACCORDING TO DESIGN OF ATTACHMENTS USED FOR MANDIBULAR OVERDENTURE USING TWO OSSEOINTEGRATED IMPLANSTS (두개의 골유착성 임프란트를 이용한 하악 OVERDENTURE에서 ATTACHMENT 설계에 따른 임프란트 지지조직의 삼차원적 광탄성 응력분석)

  • Shin, Kyoo-Hag;Jeong, Chang-Mo;Jeon, Young-Chan;Hwang, Hie-Seong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.31-69
    • /
    • 1996
  • The purpose of this investigation was to analyze stress distribution in implant supporting tissue according to different types of attachments such as combination bar attachment, Hader bar attachment, O-Ring attachment and Dal-Ro attachment that are used in mandibular overdenture by using two osseointegrated implants, to study the influence that POM IMC used in bar type attachment has in implant supporting tissue and compare the preceding analyses to find out an effective stress distribution method. Three dimensional photoelastic method was used to obtain the following results. (A) Analysis of stress distribution according to attachment type 1. Under vertical load condition, compressive stress was seen at implant supporting area of working side on all the photoelastic models but in Hader bar attachment tensional stress was seen at distal upper area of implant supporting area. Relatively Hader bar and O-Ring attachment showed even stress distribution pattern. 2. Under vertical load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models. 3. Under $25^{\circ}$ lateral load condition, general compressive stress was seen at working side implant supporting area in most of the models, especially at distal upper supporting area higher compressive stress concentration was seen in combination bar attachment and tensional stress concentration, in Hader bar attachment. 4. Under $25^{\circ}$ lateral load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models, except O-Ring model which showed compressive stress only. (B) Influence of POM IMC to stress distribution in bar type attachment 5. Under vertical load condition, better stress distribution pattern was seen at working side of combination bar and Hader bar attachment model using POM IMC. 6. Under vertical load condition, stress value was increased at nonworking side of combination bar attachment model using POM IMC and tendency of increasing compression was seen at nonworking side of Hader bar attachment model using POM IMC. 7. Under $25^{\circ}$ lateral load condition, better stress distribution pattern was seen at working side of combination bar attachment model using POM IMC but tendency of increasing stress was seen on working side of Hader bar attachment model using POM IMC. 8. Under $25^{\circ}$ lateral load condition, stress reduction was seen at nonworking side of combination bar attachment model using POM IMC but tendency of increasing stress was seen at nonworking side of Hader bar attachment model using POM IMC.

  • PDF

Stress Analysis on the Splinted Conditions of the Two Implant Crowns with the Different Vertical Bone Level (치조골 높이가 다른 2개 임플란트 금관의 고정연결 조건에 따른 응력분석)

  • Jeon, Chang-Sik;Jeong, Sin-Young;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.169-182
    • /
    • 2005
  • The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.

Community Dynamics of the Benthic Marine Algae in Hakampo, the Western Coast of Korea

  • Yoo, Jong-Su;Kim, Young-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.428-438
    • /
    • 2003
  • Benthic marine algal community of Hakampo in the western coast of Korea was investigated qualitatively and quantitatively. Seasonal assessments of species composition, biomass, dominant species in biomass and vertical distributional pattern were carried out from spring to winter. A total of 121 species was identified; 6 blue-green, 18 green, 16 brown, 81 red algae. In three sites investigated, 96 species were collected at Bunjeomdo, 75 at Maoe, and 57 at Doranggol, respectively. Dermocarpa sp. and Acrochaetium microscopicum were collected for the first time in Korea through this investigation. Dominant species in specific proportions of biomass were Sargassum thunbergii, Gloiopeltis furcata, Corallina spp., Symphyocladia latiuscula and Monostroma nitidum. Seasonal fluctuations of mean biomass were 31.59-427.69 g dry wt$.$$\mu \textrm m^{-2}$ at Bunjeomdo and 20.98-473.48 g dry wt$.$$\mu \textrm m^{-2}$ at Maoe, respectively, which were comparatively high in the western coast of Korea. Vertical distribution in intertidal zones was Gloiopeltis furcata-Gloiopeltis furcata and Corallina spp.-Corallina spp. and Sargassum thunbergii.

Mineral Distribution of Soil at Different Depth in a Fairway Slope (훼어웨이 경사의 토양 깊이별 무기성분 분포)

  • Choi, B. J.;Ju, Y. H.;Park, H.
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • Soil chemical properties were investigated to elucidate vertical movement of mineral nutrients in a fairway slope of 27 year-old golf course. Soil samples were taken at every 10cm depth to 4Ocm on 4 sites 20m apart each along two parallel lines 60m apart on the slope(15˚) in August. Accord-ing to the similarity of vertical distribution pattern they could be classified into 6 distinctive groups(magnesium, nitrate, phosphorus, ammonium, manganese and copper) and the slope tended to affect the vertical movement of minerals. The contents of Ca and Mg increased with depth while NO$_3$-N and Zn decreased and correlated positively. Soil pH showed significant positive correlation with depth, Ca and Mg. Phosphorus content was highest in 10~20cm depth and decreased resulting in relatively high content in 30~40cm depth of the bottom site of slope. Iron distribution pattern was similar to phosphorus. Potassium and $NH_4$showed various(irregular) patterns. Mn was highest in the deep layer at the lower sites of slope but it was reverse at the upper sites and negatively correlated with Fe. Cu content incresed with depth and heighest in 20~30cm depth. Electroconductivity showed significant positive correlation with $NO_3$-N. Magnesium, cal-cium and copper seem to be prone to defficiency due to fast leaching, and nitrate and phosphorus prone to excess problem. Preventive measures on acidification of surface soil should be taken.

  • PDF

Spatial Distribution Characteristics of Vertical Temperature Profile in the South Sea of Jeju, Korea (제주 남부해역 수온 수직구조의 공간분포 특성 파악)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.162-174
    • /
    • 2012
  • To visualize the characteristics of vertical seawater temperature data, in the ocean having 3D spatial characteristics, 2D thematic maps like horizontal seawater temperature distribution map at each depth layer and 3D volume model using 3D spatial interpolation are used. Although these methods are useful to understand oceanographic phenomena visually, there is a limit to analyze the spatial pattern of vertical temperature distribution or the relationship between vertical temperature characteristics and other oceanic factors (seawater chemistry, marine organism, climate change, etc). Therefore, this study aims to determine the spatial distribution characteristics of vertical temperature profiles in the South Sea of Jeju by quantifying the characteristics of vertical temperature profiles by using an algorithm that can extract the thermocline parameters, such as mixed layer depth, maximum temperature gradient and thermocline thickness. For this purpose spatial autocorrelation index (Moran's I) was calculated including mapping of spatial distribution for three parameters representing the vertical temperature profiles. Also, after grouping study area as four regions by using cluster analysis with three parameters, the characteristics of vertical temperature profiles were defined for each region.

Distribution of ATP in the Deep-Sea Sediment in the KODOS 97-2 Area, Northeast Equatorial Pacific Ocean (북동적도 태평양 KODOS 97-2 해역 심해저 퇴적물 내의 ATP 분포양상)

  • Hyun, Jung-Ho;Kim, Kyeong-Hong;Chi, Sang-Bum;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.142-148
    • /
    • 1998
  • Environmental baseline information is necessary in order to assess the potential environmental impact of future manganese-nodule mining on the deep-seabed ecosystem. Total ATP (T-ATP), dissolved ATP (D-ATP) and particulate ATP (P-ATP) were measured to estimate total microbial biomass and to elucidate their vertical distribution patterns in the seabed of KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific Ocean. Within the upper 6 cm depth of sediment, the concentrations of T-ATP, D-ATP and P-ATP ranged from 4.4 to 40.6, from 0.6 to 16.1, and from 3.0 to 29.2 ng/g dry sediment, respectively. Approximately 84% of T-ATP, 81% of D-ATP, and 74% of P-ATP were present within the topmost 2 cm depth of sediment, and the distributions of ATP were well correlated with water content in the sediment. These results indicate that the distribution of total microbial biomass was largely determined by the supply of organic matter from surface water column. Fine-scale vertical variations of ATP were detected within 1-cm thick veneer of the sediment samples collected by multiple corer, while no apparent vertical changes were observed in the box-cored samples. It is evident that the box-core samples were disturbed extensively during sampling, which suggests that the multiple corer is a more appropriate sampling gear for measuring fine-scale vertical distribution pattern of ATP within thin sediment veneer. Overall results suggest that the concentrations of ATP, given their clear changes in vertical distribution pattern within 6 cm depth of sediment, are a suitable environmental baseline parameter in evaluating the variations of benthic microbial biomass that are likely to be caused by deep-seabed mining operation.

  • PDF

PHOTOELASTIC STRESS ANALYSIS ON THE MANDIBLE CAUSED BY IMPLANT OVERDENTURE (임플랜트 Overdenture의 Bar설계에 따른 하악지지조직의 광탄성학적 응력분석)

  • Kang Jeong-Min;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.327-353
    • /
    • 1994
  • This study was performed to evaluate the effects of number and alignment of implant fixture and various bar designs on the retention of denture and the stress distribution. Six kinds of photoelastic mandibular models and nine kinds of overdenture specimens were designed. A unilateral vertical load was gradually applied on the right first molar to calculate the maximal dislodgement load of each specimen. A unilateral vertical load of 17 Kgf was applied on the right first molar and a vertical load of 10 Kgf was applied on the interincisal edge region. The stress pattern which developed in each photoelastic model was analyzed by the reflection polariscope. The results obtained were as follows: 1. The maximal dislodgement load reversely increased with the distance from the loading point to the implant fixture, while it linearly increased with that from the most posterior implant fixture to the mesial clip. The maximal dislodgement load also increased with the use of a cantilever bar. 2. Under the posterior vertical load, the stress to the supporting tissue of the denture base increased with the distance from the loading point to the implant future. The stress concentration on the apical area of the implant future reversely increased with the distance from the loading point to the implant future. 3. In the overdentures supported by two implant fixtures under the posterior vertical load. the specimen implanted on lateral incisor areas with a cantilever bar exhibited more favorable stress distribution than that without a cantilever bar. The specimen implanted on the canine areas without a cantilever bar, however, exhibited more favorable stress distribution. 4. In the overdentures supported by three implant fixtures. the specimen implanted ell the midline and canine areas exhibited more favorable stress distribution than that implanted oil the midline and the first premolar areas. 5. In the overdentures supported by four implant fixtures. the specimen implanted with two adjacent implant fixtures exhibited more favorable stress distribution than that implanted at equal distance under the posterior vertical load. 6. Under the anterior vertical load, the overdentures supported by three implant fixtures exhibited stress concentration on the supporting structure of the middle implant future. In overdentures supported by two or four implant futures, no significant difference was noted in stress distribution between the types of bars. These results indicate that the greater the number of implant fixtures, the better the stress distribution is. A favorable stress distribution may be obtained in the overdentures supported by two or three implant fixtures, if the location and the design of the bar are appropriate.

  • PDF

A COMPARISON OF POST AND CORE TECHNIQUES WITH FINITE ELEMENT ANALYSIS (유한요소법에 의한 Post와 Core 형성법의 비교)

  • Cheong, Yong-Kee;Hur, Bock;Lee, Hee-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.70-86
    • /
    • 1996
  • The purpose of this study was to analyze the stress distribution in mandibular second premolars restored with different post and core techniques. Sixteen two-dimensional finite element model of mandibular second premolars restored with post and core and complete crown were developed according to the diameter, length, and material of post and core. Vertical force, 10N in magnitude, was applied first to the central fossa and then $45^{\circ}$ oblique force of same magnitude was applied to the buccal contact surface of buccal cusp. The obtained results were as follows : 1. Stress distribution within the dentin 1) Regardless of the material of the post and core and the diameter and length of the post, the pattern of stress distribution within the dentin was similar. 2) Maximum dentinal stress was observed on the lingual root surface of alveolar crest level with oblique loading and on lingual side of root dentin at the crown margin on vertical loading. 3) Cast post and cores produced the lowest dentinal stress concentrations and the highest stress concentration was observed in composite resin post and cores. 2. Stress distribution within the post and core 1) Within the amalgam and composite resin post and core, the patterns and maximum values of stress were similar. Maximum stress located at the central fossa of core portion on vertical loading and at the lingual junction of post and core with oblique loading. 2) Among the all post and cores, the cast post and core registered the highest stress concentration and maximum stress value within the post. Maximum stress located at the post apex on vertical loading and at lingual half of the post surface with oblique loading. 3) In case of Para-post and amalgam core, maximum stress located at the central fossa of core portion and lingual tip of the post head on vertical loading. With oblique loading, maximum stress located at the lingual half of the post surface.

  • PDF

Analysis of 3-Dimensional Current Flow by n-electrode Pattern Shape in GaN-based Vertical LED (수직형구조 GaN계 발광다이오드에서 전극구조 모양에 따른 3차원 전류분포 해석)

  • Yun, Ju-Seon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.231-232
    • /
    • 2008
  • The effect of n-electrode patterns on the current distribution in active region is investigated in GaN-based blue vertical light emitting diodes (VLEDs). A 3-dimension circuit model is adopted to analyze the current flow patterns in VLEDs. We had fabricated VLEDs having different n-electrode patterns, measured their current-voltage characteristics, and compared to the numerical simulation. It turns out that the current spreading in VLEDs is strongly dependent on the n-electrode pattern. Some design guidelines for n-electrode patterns to produce uniform current injection are presented.

  • PDF

Hydroacoustic Survey of Fish Distribution and Aggregation Characteristics in the Yongdam Reservoir, Korea (수중음향기법을 이용한 용담호의 어류 분포특성 연구)

  • Lee, Hyungbeen;Lee, Kyounghoon;Kim, Seonghun;Kim, In-Ok;Kang, Donhyug
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1055-1062
    • /
    • 2014
  • Hydroacoustic surveys were conducted for spatio-temporal distribution and size estimation of fish in the Yongdam reservoir, Korea, from April to July 2014. Acoustic data were collected along acoustic transects using a 120 kHz scientific echosounder. The received acoustic data were the in situ acoustic target strength (dB) and nautical area scattering coefficient ($m^2/mile^2$). Data on fish behavioral patterns and size were collected using a DIDSON acoustic camera at stationary stations. Fish were mainly distributed in the center channel and close to the outer Yongdam reservoir. Acoustic density of fish in the summer season were higher than in the spring season. The seasonal vertical distribution pattern of fish aggregations may be strongly related to the vertical temperature structure. The size distribution of fish obtained from an acoustic camera correlated well with the acoustic size of fish from an echosounder.