• Title/Summary/Keyword: Vertical distribution of PAHs concentrations

Search Result 4, Processing Time 0.02 seconds

Vertical Distribution of PAHs Concentrations in the Aerosol (대기 연직별 에어로졸 내 PAHs 농도분포 특성)

  • Hwang, Eun Jin;Ahn, Kang Ho;Eun, Hee Ram;Lee, Hong Ku;Lee, Yang Woo;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.169-176
    • /
    • 2014
  • Air samples were collected at various altitudes (from 165 to 1153 m) to observe vertical distribution of particulate PAHs concentrations using a very compact and light particle sampling package developed by Eun et al.(2013). TD-GC-MS developed by Hwang et al.(2014) was applied to PAHs analysis for effective analysis of PAHs contained trace amounts in the samples. The ranges of total PAHs concentrations were from 6.95 to $96.0ng\;m^{-3}$ on the ground and from 3.75 to $21.74ng\;m^{-3}$ at high altitude, respectively. All of particulate PAHs concentrations measured on the ground were higher than those measured at high altitude, while, the profile of individual PAH compounds between the ground and high altitude samples were similar. It means the distribution of particulate PAHs concentrations at high altitude were affected by the emission of PAHs emitted from ground.

Diurnal Variation, Vertical Distribution and Source Apportionment of Carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) in Chiang-Mai, Thailand

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1851-1863
    • /
    • 2013
  • Diurnal variation of particulate polycyclic aromatic hydrocarbons (PAHs) was investigated by collecting PM10 at three different sampling altitudes using high buildings in the city center of Chiang-Mai, Thailand, during the relatively cold period in late February 2008. At site-1 (12 m above ground level), B[a]P concentrations ranged from 30.3-1,673 pg $m^{-3}$ with an average of $506{\pm}477\;pg\;m^{-3}$ contributing on average, $8.09{\pm}8.69%$ to ${\Sigma}PAHs$. Ind and B[b]F concentrations varied from 54.6 to 4,579 pg $m^{-3}$ and from 80.7 to 2,292 pg $m^{-3}$ with the highest average of $1,187{\pm}1,058\;pg\;m^{-3}$ and $963{\pm}656\;pg\;m^{-3}$, contributing on average, $19.0{\pm}19.3%$ and $15.4{\pm}12.0%$ to ${\Sigma}PAHs$, respectively. Morning maxima were predominantly detected in all observatory sites, which can be described by typical diurnal variations of traffic flow in Chiang-Mai City, showing a morning peak between 6 AM. and 9 AM. Despite the fact that most monitoring sites might be subjected to specific-site impacts, it could be seen that PAH profiles in Site-1 and Site-2 were astonishingly homogeneous. The lack of differences suggests that the source signatures of several PAHs become less distinct possibly due to the impacts of traffic and cooking emissions from ground level.

Vertical Distribution and Potential Risk of Particulate Polycyclic Aromatic Hydrocarbons in High Buildings of Bangkok, Thailand

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1865-1877
    • /
    • 2013
  • Vertical variations of polycyclic aromatic hydrocarbon (PAH) concentrations in $PM_{10}$ were investigated in order to assess the factors controlling their behavior in the urban atmosphere of Bangkok City, Thailand. Air samples were collected every three hours for three days at three different levels at Bai-Yok Suit Hotel (site-1 and site-2) and Bai-Yok Sky Hotel (site-3) in February $18^{th}-21^{st}$, 2008. The B[a]P concentration showed a value 0.54 fold, lower than the United Kingdom Expert Panel on Air Quality Standard (UK-EPAQS; i.e. 250 pg $m^{-3}$) at the top level. In contrast, the B[a]P concentrations exhibited, at the ground and middle level, values 1.50 and 1.43 times higher than the UK-EPAQS standard respectively. PAHs displayed a diurnal variation with maximums at night time because of the traffic rush hour coupled with lower nocturnal mixing layer, and the decreased wind speed, which consequently stabilized nocturnal boundary layer and thus enhanced the PAH contents around midnight. By applying Nielsen's technique, the estimated traffic contributions at Site-3 were higher than those of Site-1: about 10% and 22% for Method 1 and Method 2 respectively. These results reflect the more complicated emission sources of PAHs at ground level in comparison with those of higher altitudes. The average values of incremental individual lifetime cancer risk (ILCR) for all sampling sites fell within the range of $10^{-7}-10^{-6}$, being close to the acceptable risk level ($10^{-6}$) but much lower than the priority risk level ($10^{-4}$).

Distributions and Sources of Polycyclic Aromatic Hydrocarbons in the Tidal Flat Sediments from Incheon Coastal Area (인천연안 갯벌의 다환방향족탄화수소의 농도분포와 발생원 평가)

  • Park, Jung Hwan;Lee, Choong Dae;Kim, Jin Han
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.441-451
    • /
    • 2013
  • Samples for estimating concentrations of polycyclic aromatic hydrocargons(PAHs), total petroleum hydrocarbons(TPHs), and benzene-toluene-ethylbenzene-xylene(BTEX) were collected at the tidal flat sediments of 8 coastal sites in Incheon, at seventy-two sampling stations for the surface sediment and twenty-four stations for the sediment core, twice in the spring and fall in 2011. This study was performed to evaluate the distributions of seasonal and spatial concentrations of PAHs, TPHs, and BTEX in the tidal flat sediments. The source origin of PAHs were carried out. The total average concentration of PAHs in the tidal flat sediment was $95.62{\mu}g/kg$. The characteristic of PAHs concentration distributions was observed that the average concentration in the autumn was lower than that in the spring, and higher concentration in the sediment core than the surface sediment, and greater vertical concentration at the top rather than the bottom in the sediment core. The total average concentration of TPHs at all sampling sites was in the value of 46 mg/kg. The characteristic of the TPHs concentration distribution was observed that the average concentration in the fall was much higher than that in the spring, and higher concentration in the surface sediment than the sediment core. The possible source of PAHs inputs were mainly derived from both pyrogenic and petrogenic origin at the surface sediment at Janghwari site and the sediment cores of both Sorae and Okyeon sites, while the rest sites of study areas originated with pyrogenic combustion.