• Title/Summary/Keyword: Vertical deflection

Search Result 287, Processing Time 0.025 seconds

Friction Effects on the Performance of Double-Bumped Air Foil Bearings (이중범프포일 공기베어링의 성능에 미치는 마찰효과)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.162-169
    • /
    • 2007
  • This paper deals with friction effects on the performance of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. The double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements (3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석)

  • Lee, Hyoung-Wook;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.

Behavior of Single Pole Foundation using Experimental Study (실증시험을 통한 강관주기초의 거동특성)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.598-604
    • /
    • 2010
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Nine prototype field-tests (1/8 scale) have been conducted in order to determine the vertical and lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Analysis method of the Superstructure on Floating Pontoon Considering the Construction Sequences (시공단계를 고려한 플로팅 폰툰의 상부구조물 해석기법)

  • Lee, Young-Wook;Chae, Ji-Yong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • In this research, the influence of additional vertical deformation of floating pontoon when dead load of each story is loaded during construction was investigated. The analysis procedure is presented for considering the influence of the additional deformation to calculate the additional moment of super-frame. Following the procedure, an example building with 3 storied steel frame was analyzed. Analysis method that taking no account for deformation of pontoon to the modeling was underestimated by ignoring design load following deformation of vertical load. By operating the load at the same time, design load under the influence of large deflection of model which whole modeling of floating structure was overestimated. So analysis method of floating structure considering the construction sequences demonstrated the suitable method.

Time-dependent analysis of cable trusses -Part I. Closed-form computational model

  • Kmet, S.;Tomko, M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.

A Study on The Measurement and Compensation of Satellite Deflection (위성의 처짐 측정 및 보상에 관한 연구)

  • Moon, Hong-Youl;Kim, Jin-Hee;Woo, Sung-Hyun;Cho, Chang-Lae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • Satellites are generally put in horizontal configuration to install a weighty, large and deploying SAR antenna which is required precise alignment. It is not to damage an antenna deployment mechanism from impellent strength as SAR antenna rotation axis is aligned with the gravity axis and SAR antenna is put in a zero gravity condition. In order to install such a deploying antenna, satellite should be a same condition of the vertical configuration without the deflection of satellite when it is rotated horizontally. In this paper, it is shown how to measure the deflection of satellite and how to get a reaction force value for compensating the deflection.

  • PDF

Anticipated and actual performance of composite girder with pre-stressed concrete beam and RCC top flange

  • Gurunaathan, K.;Johnson, S. Christian;Thirugnanam, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.117-124
    • /
    • 2017
  • Load testing is one of the important tests to determine if the structural elements can be used at the intended locations for which they have been designed. It is nothing but gradually applying the loads and measuring the deflections and other parameters. It is usually carried out to determine the behaviour of the system under service/ultimate loads. It helps to identify the maximum load that the structural element can withstand without much deflection/deformation. It will also help find out which part of the element causes failure first. The load-deflection behaviour of the road bridge girder has been studied by carrying out the load test after simulating the field conditions to the extent possible. The actual vertical displacement of the beam at mid span due to the imposed load was compared with the theoretical deflection of the beam. Further, the recovery of deflection at mid span was also observed on removal of the test load. Finally, the beam was checked for any cracks to assert if the beam was capable of carrying the intended live loads and that it could be used with confidence.

Mechanisms of thermally induced deflection of a long-span cable-stayed bridge

  • Zhou, Yi;Sun, Limin;Peng, Zhijian
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.505-522
    • /
    • 2015
  • Variation of temperature is a primary environmental factor that affects the behavior of structures. Therefore, understanding the mechanisms of normal temperature-induced variations of structural behavior would help in distinguishing them from anomalies. In this study, we used the structural health monitoring data of the Shanghai Yangtze River Bridge, a steel girder cable-stayed bridge, to investigate the mechanisms of thermally induced vertical deflection ($D_T$) at mid-span of such bridges. The $D_T$ results from a multisource combination of thermal expansion effects of the cable temperature ($T_{Cab}$), girder temperature ($T_{Gir}$), girder differential temperature ($T_{Dif}$), and tower temperature ($T_{Tow}$). It could be approximated by multiple linear superpositions under operational conditions. The sensitivities of $D_T$ of the Shanghai Yangtze River Bridge to the above temperatures were in the following order: $T_{Cab}$ > $T_{Gir}$ > $T_{Tow}$ > $T_{Dif}$. However, the direction of the effect of $T_{Cab}$ was observed to be opposite to that of the other three temperatures, and the magnitudes of the effects of $T_{Cab}$ and $T_{Gir}$ were found to be almost one order greater than those of $T_{Dif}$ and $T_{Tow}$. The mechanisms of the thermally induced vertical deflection variation at mid-span of a cable-stayed bridge as well as the analytical methodology adopted in this study could be applicable for other long-span cable-stayed bridges.

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN BONE BY THE TRANSPALATAL LINGUAL ARCH (TRANSPALATAL LINGUAL ARCH에 의한 골내 응력 분포에 관한 광탄성적 연구)

  • Ko, Ki-Young;Tae, Ki-Chul;Kook, Yoon-Ah;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.711-721
    • /
    • 1997
  • The purpose of this study was to investigate the stress distribution and intensity derived from the transpalatal lingual arch in the investing bone composed of photoelastic material(PL-3). The transpalatal lingual arch wire was deflected in the horizontal and vertical direction to give the various conditions. The two-dimensional photoelastic stress analysis was performed, and the stress distrebution was recored by photography The results were as follows: 1. In bilateral expansion, as horizontal deflection was singly applied, the stress was more concentrated on the root apex in square free end than round. In square free end, as vertical deflection was increased gradually, the black line meaning center of rotation moved inferiorly together with the increment of whole fringes. 2. In application of vertical deflection on anchorage side for unilateral expansion, the stress distribution that expansive force leaned to expansion side was observed. As vortical deflection increased, the extruding stress was observed on molar of expansion side. And as horizontal deflection increased, the tipping stress on the molar of anchorage side was observed. 3. In unilateral rotation with the asymmetric toe-in, the fringe appeared on the distal aspect of root apex.

  • PDF