• Title/Summary/Keyword: Vertical compaction

Search Result 86, Processing Time 0.025 seconds

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

A Numerical Analysis of Hydraulic Hammer Compaction (유압식 햄머다짐의 수치해석적 연구)

  • 박인준;박양수;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.183-190
    • /
    • 2000
  • Effective range of Hydraulic Hammer Compaction was studied by numerical analysis instead of empirical method. Numerical analyses were carried out with commercial FEM code, ABAQUS, and verified by comparing the numerical results with field tests of Hydraulic Hammer Compaction. Most of material properties were evaluated by data from laboratory and in-situ tests. Vertical effective range was estimated by distribution curve of plastic strain energy dissipated through soil layers under dynamic load and these results were in good agreement with field tests. Based on verification, the effects of governing properties of Hydraulic Hammer Compaction such as number of hit can be determined by numerical analyses. In addition, vertical effective range can also be determined by Menard's empirical equation using the external work at converging time of plastic strain energy in numerical analysis. This implies that the minimum energy of Hydraulic Hammer Compaction for improvement can be determined by Menard's equation.

  • PDF

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

Characteristics of Vertical Stress Distribution in Sandy Soil According to the Relative Compaction and Composition of the Soil Layer (사질토 지반의 상대다짐도 및 토층에 따른 연직지중응력 분포 특성)

  • Nam, Hyo-Seok;Lee, Sang-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.43-50
    • /
    • 2010
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of foundation condition in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to circular uniform load, the vertical stress increments ($\Delta\sigma_z$) was increased as load increasing, the maximum values of $\Delta\sigma_z$ was achieved at the point loading axis, and $\Delta\sigma_z$ was not shown over at a distance of three times of loading plate width (B). The vertical stress increments were achieved largely at 80 % relative compaction (Rc) compared to 95 % relative compaction due to stress concentration in sandy soil. When sandy soil subjected to circular uniform load, the $\Delta\sigma_z$ differences between theoretical and experimental values as load increased were more increased and its maximum differences were achieved at stress axis. When gravel surface macadamized over sandy soil subjected to load, the $\Delta\sigma_z$ was concentrated to load axis as load increasing, so that macadamization will be decreased load transmission.

A Case Study on Test Embankment using Vertical Drain Method at Incheon International Airport (인천국제공항 수직배수공법 시험시공 사례연구)

  • 권오현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.33-44
    • /
    • 2001
  • The generally known vertical drain methods for improvement of soft ground are Sand Drain, Sand Compaction Pile, Plastic Drain Board, and Pack Drain. Recently, Plastic Drain Board method application in soft ground is widely used. In this case study, it is compared with each other vertical drain methods from the results of monitorning and test embankment. The results of the analysis and the study show that Plastic Drain Board method is relatively acceptable as vertical drain method.

  • PDF

Calculations on the Reduction Rate of Ground Level Magnetic Fields due to Varying Configurations of Overhead Transmission Line (가공 송전선 형상변화에 따른 지표면 자계저감율 계산)

  • Min, Suk-Won;Kim, Eung-Sik;Park, Jun-Hyeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2027-2034
    • /
    • 2008
  • There are concerns on possible health effects from exposure to electromagnetic fields. One reflection of this concerns is the considerable controversy, delay, and cost increases involved in the construction of power lines and facilities. To cope with such challenges, in this paper we investigated magnetic fields reduction techniques such as general compaction, in' span compaction, cruciform, vertical, 3 way splits phase, and 4way splits phase. As results, we found general compaction and 4 way splits phase could reduce magnetic fields up to 90%, while cruciform, vertical, and 3 way splits phase gave lower reduction rates of 30% because these configurations were similar to a current type of low reactance arrangement. We also knew 1 spacer in span compaction was appropriate in Korea in view of effectiveness and economy.

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

A Estimation Method of Settlement for Granular Compaction Pile (조립토 다짐말뚝의 침하량 산정기법)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Park, Jun-Yong;Yoon, Chang-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.286-293
    • /
    • 2005
  • In soft ground the settlement criterion usually governs. Therefore, it is very important not only reasonable assessment of the allowable bearing capacity of the soil but also reasonable assessment of settlement. In the previous studies by many other researchers, load concentration ratio and settlement reduction factor are usually proposed for estimating the settlement of granular compaction piles. In the previous studies, the reinforced ground with granular compaction piles is simplified as composite ground and the analysis is performed with in the basis of this assumption. However, the lateral deformation of granular compaction pile could not be considered and only the relative vertical strength between pile and soils could be considered in the analysis. In this study, a method adapting the Tresca failure criterion is proposed for calculating settlement of granular compaction pile. Proposed method can be considered the strength of pile material, pile diameter, installing distance of pile and the deformation behavior of vertical and horizontal directions of pile. In the presented study, large-scale field load test is performed and the results are described. Also, predictions of settlements from the proposed method are compared with the results of the load test. In addition, a series of parametric study is performed and the design parameters are analyzed.

  • PDF

Site-specific Quantification and Management of Soil Compaction: A Review (토양 다짐 변이 측정 및 관리기술에 관한 연구동향)

  • Chong, B.H.;Chung, S.O.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.24-32
    • /
    • 2006
  • Compaction is becoming a greater concern in crop production and the environment because it can have deleterious effects on growing conditions that are difficult to remediate. Because compaction can vary considerably from point to point within a field, and also from depth to depth within the soil profile, it is important to consider quantification and management of the spatial and vertical variability in soil compaction when developing an overall site-specific crop management plan. In this paper, the importance of soil compaction, techniques for quantification of its variability, and the concept of site-specific tillage are examined. Methods and systems to detect within-field variation in soil strength as a surrogate measure of soil compaction and related soil properties are also compared and discussed. Quantification of variability in soil compaction and site-specific compaction management was motivated recently, and sensors and control systems are still under development. Future study will need to address a number of issues related to understanding and applying the sensor measurements.

Quality of root canal fillings using three gutta-percha obturation techniques

  • Ho, Edith Siu Shan;Chang, Jeffrey Wen Wei;Cheung, Gary Shun Pan
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • Objectives: The goal of this study was to compare the density of gutta-percha root fillings obturated with the following techniques: cold lateral (CL) compaction, ultrasonic lateral (UL) compaction, and warm vertical (WV) compaction. Materials and Methods: Thirty-three extracted mandibular first molars, with two separate mesial canals in each, were selected. After instrumentation, the canals were stratified into three groups based on canal length and curvature, and underwent obturation with one of the techniques. No sealer was used in order to avoid masking any voids. The teeth were imaged pre- and post-obturation using micro-computed tomography. The reconstructed three-dimensional images were analyzed volumetrically to determine the amount of gutta-percha present in every 2 mm segment of the canal. P values < 0.05 were considered to indicate statistical significance. Results: The overall mean volume fraction of gutta-percha was $68.51{\pm}6.75%$ for CL, $86.56{\pm}5.00%$ for UL, and $88.91{\pm}5.16%$ for WV. Significant differences were found between CL and UL and between CL and WV (p < 0.05), but not between UL and WV (p = 0.526). The gutta-percha density of the roots treated with WV and UL increased towards the coronal aspect, but this trend was not noted in the CL group. Conclusions: WV compaction and UL compaction produced a significantly denser gutta-percha root filling than CL compaction. The density of gutta-percha was observed to increase towards the coronal aspect when the former two techniques were used.