• 제목/요약/키워드: Vertical Shell-and -tube Type Heat Exchanger

검색결과 5건 처리시간 0.017초

Performance of a Shell-and-Tube Heat Exchanger with Spiral Baffle Plates

  • 손영석;신지영
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1555-1562
    • /
    • 2001
  • In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions . Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer.

  • PDF

수직형 순환유동층 열교환기에서의 유체유동과 온도장의 수치해석 (Numerical analysis of fluid flow and thermal fields in the vertical fluidized bed heat exchanger)

  • 이병창;강호근;이명성;안수환
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.24-29
    • /
    • 2012
  • The numerical analysis by using CFX 11.0 commercial code was done for prediction of fluid flow and thermal field in the vertical heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the fluid flow and temperatures in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which the solid particles of glasses (3 $mm{\Phi}$) were used in the fluidized bed with a smooth tube. The effect of circulation on the distance(L) of tube inlet and baffle plate was also examined. The present experimental and numerical results showed that the particles in the distance (Ds) of 15 mm showed a more efficient circulation without stacked the space and the LMTD(Log Mean Temperature Difference) in the fluidized bed type was much lower than that in the typical type shell and tube heat exchanger.

파형관을 갖는 수직형 순환유동층 열교환기의 열전달 (Heat Transfer in the Vertical Type Fluidized Bed Heat Exchanger with Corrugated Tubes)

  • 안수환;배성택;김명호;이병창;이윤표
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1149-1155
    • /
    • 2004
  • An experimental study was performed to investigate the characteristics of heat transfer in a vertical type fluidized bed shell-and-tube type heat exchanger with corrugated tube. Seven different solid particles having the same volume were circulated in the heat of exchanger. The effects of various parameters such as water flow rates, particle geometries, materials, and corrugated tube geometries were investigated. The present work showed that the higher thermal capacities of materials and the geometries closer to the spherical one have higher heat transfer performances. In addition, heat transfer coefficients in the corrugated tubes were a little higher than those in the smooth tubes.

Numerical Predictions of Heat Transfer in the Fluidized Bed Heat Exchanger

  • Ahn, Soo-Whan
    • 농업생명과학연구
    • /
    • 제44권4호
    • /
    • pp.29-43
    • /
    • 2010
  • The numerical analysis by using CFX 11.0 commercial code was done for proper design of the heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass ($3mm{\Phi}$), aluminum ($2{\sim}3mm{\Phi}$), steel ($2{\sim}2.5mm{\Phi}$), copper ($2.5mm{\Phi}$) and sand ($2{\sim}4mm{\Phi}$) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behavior might be attributed to the parameters such as surface roughness or particle heat capacity.

다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석 (Numerical analysis for heat transfer and pressure drop characteristics of )

  • 후영영;박형선;윤준규;임종한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.367-375
    • /
    • 2014
  • 셀-튜브 열교환기는 산업분야에서 가장 널리 사용되는 열교환기이다. 열교환기의 열적 성능을 개선하기 위하여 셀-튜브 열교환기에 대해 배플의 배치, 배플의 방향, 배플의 표면의 돌기형상 등의 인자를 변경하였으며, 유동의 박리 및 경계층해석에 적절히 이용되는 SST 난류모델을 적용하여 열전달특성을 고찰하였다. CFD해석시 경계조건는 셀측의 입구온도를 344K로 일정하게 하고, 물의 유량을 6, 12, 18, 24 l/min로 변화시켰다. 그 결과로는 지그재그형 배치가 열전달률 및 압력강하가 향상되는 것으로 나타났으며, 배플의 방향은 기존형보다 수직형 및 각도 $45^{\circ}$형이 열전달이 향상되는 것으로 나타났고, 압력강하는 거의 차이가 없었다. 또한 배플의 돌기형상은 열전달면적을 증가시킴으로써 열전달률 및 압력강하가 향상됨을 알 수 있었다. 해석결과를 통하여 열전달 증가가 유동의 박리, 유체의 체류시간, 튜브와의 접촉면적, 유량, 와류 등에 따라 크게 영향을 받는다는 것을 알 수 있었다.