• Title/Summary/Keyword: Vertical Resolution

Search Result 355, Processing Time 0.03 seconds

An Improved Proton Recoil Telescope Detector for Fast Neutron Spectroscopy

  • Chung, Moon-Kyu;Kang, Hee-Dong;Park, Tong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1973
  • For fast neutron spectroscopy in MeV region, a recoil proton telescope detector was designed and constructed so as to increase in detection efficiency without appreciable deterioration in energy resolution by adopting a special type of recoil proton radiator which is a combination of a ring-shaped vertical radiator and a cone-shaped horizontal radiator at a certain geometry. A neutron stopper was built in the detector system to minimize the background due to direct exposure of the Si(Li) detectors to primary incident neutrons. The detection efficiency and the energy resolution calculated at various neutron energies and geometries are given and these characteristics of the detector system were tested by 14.1 MeV neutrons. As the calculation predicted, the relative detection efficiency in case of the combined radiator system is almost 2.2 times of that for a single, ring-shaped vertical radiator system. The calculated energy resolution is 3.7% FWHM, whereas the measured resolution was 3.9% which means resolution broadening of approximately. 30% was resulted by introducing a combined radiator system into the telescope. Increase in background less than 40% was also observed.

  • PDF

Analysis on Vertical Structure of Sea Fog in the West Coast of the Korean Peninsula by Using Drone (드론을 활용한 한반도 서해 연안의 해무 연직구조 분석)

  • Jeon, Hye-Rim;Park, Mi Eun;Lee, Seung Hyeop;Park, Mir;Lee, Yong Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.307-322
    • /
    • 2022
  • A drone has recently got attention as an instrument for weather observation in lower atmosphere because it can produce the high spatiotemporal resolution weather data even though the weather phenomenon is inaccessible. Sea fog is a weather phenomenon occurred in lower atmosphere, and has observational limitations because it occurs on the sea. Therefore, goal of this study is to analyze the vertical structures about inflow, development and dispersion of sea fog using the high-resolution weather data with the meteorological sensor-equipped drone. This study observed sea fogs in the west coast of the Korean peninsula from March to October 2021 and investigated one sea fog inflowed into the coast on June 8th 2021. θe - qv diagrams (θe: equivalent potential temperature, qv: water vapor ratio) and vertical wind structures were analyzed. At inflow of sea fog, moist adiabatically stable layer was formed in 0-300 m and prevailing wind was switched from south-southwesterly to west-southwesterly under 120 m. Both changes are favorable for sea fog on the location. θe and qv plummeted in a layer 0-183 m. The inflowed sea fog developed from 183 m to 327 m by mixing with ambient atmosphere on top of sea fog. Also, strong mechanical turbulence near ground drove a vertical mixing under stable layer. At dispersion of sea fog, as θe on ground gradually increased, air condition was changed to neutral. Evaporation occurred on both bottom and top in sea fog. These results induced dissipation of sea fog.

High Resolution Photonic Force Microscope Using Resonance Energy Transfer

  • Heo, Seung-Jin;Kim, Ki-Pom;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.288-288
    • /
    • 2010
  • Photonic Force Microscope (PFM) is a scanning force microscope using an optical trap with several piconewton. In PFM, we can have topological information from the bead position trapped in optical trap. Typically the resolutions of lateral and vertical position are 40 nm and 50 nm respectively. To improve the vertical resolution below 10 nm, we use resonance energy transfer which has 5nm resolution in distance. Here we show preliminary results, including performances of scanning bead and fluorescence imaging system.

  • PDF

Quality Evaluation of Ultrasonographic Equipment Using an ATS-539 Multipurpose Phantom in Veterinary Medicine

  • Cho, Young-kwon;Lee, Youngjin;Lee, Kichang
    • Journal of Veterinary Clinics
    • /
    • v.39 no.3
    • /
    • pp.114-120
    • /
    • 2022
  • The purpose of this study is to examine the status of quality control using multipurpose phantom of ultrasound equipment used in hospital of veterinary college in South Korea by using ATS-539 multipurpose phantom so as to examine quantitative and objective new image evaluation method. Specialists discussed and analyzed multipurpose phantom images acquired by using convex transducer of 10 ultrasound imaging devices, currently used in 9 veterinary colleges, at 4.0-6.0 MHz. Total 8 items that can be measured with ATS-539 multipurpose phantom including dead zone, vertical and horizontal measurement, axial/lateral resolution, sensitivity, focal zone, functional resolution and gray scale/dynamic range were evaluated. For qualitative evaluation, valid decisions were made based on dead zone, axial/lateral resolution, and gray scale/dynamic range which are resolution index, and coefficient of variation (COV) and blind referenceless image spatial quality evaluator (BRISQUE) were found to increase objectivity. As a result of experiment, all the targeted ultrasonic devices were found appropriate from qualitative evaluation items of dead zone, axial/lateral resolution, and gray scale/dynamic range. In other evaluation items, they were found to be appropriate from focal zone and vertical measurement of quantitative evaluation while inappropriate from horizontal measurement, sensitivity, and functional resolution. COV value was 0.12 ± 0.04, and BRISQUE value was 47.77 ± 2.77, both analysis results show that the noise level of all ultrasonic devices was located within tolerance range. Upon image examination using ATS-539 multipurpose phantom, they were 100% appropriate with inspection standards of dead zone, axial/lateral resolution, and gray scale/dynamic range, and besides, focal zone and functional resolution can be used as evaluation items. In the field of veterinary medicine, 8 standard items using ATS-539 multipurpose phantom and image evaluation items using COV and BRISQUE can be used as standards for quality control of ultrasonography machine.

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik;Kim, Jangsun;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.619-626
    • /
    • 2022
  • In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.

Feature Extraction Technique for Insulation Fault of High Voltage Motor Stator Winding (고압전동기 고정자권선의 절연결함에 대한 특징추출기법)

  • Park Jae-Jun;Lee Sung-Young;Mun Dae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.976-983
    • /
    • 2006
  • Multi-resolution Signal Decomposition (MSD) Technique of Wavelet Transform has interesting properties of capturing the embedded horizontal, vertical and diagonal variations within an image in a separable form. This feature was exploited to identify individual partial discharge sources present in multi-source PD pattern, usually encountered during practical PD measurement. Employing the Daubechies wavelet, feature were extracted from the third level decomposed and reconstructed horizontal and vertical component images. These features were found to contain the necessary discriminating information corresponding to the individual PD sources and multi-PD soruces.

3-DIMENSIONAL TILING TECHNIQUE TO PROCESS HUGE SIZE HIGH RESOLUTION SATELLITE IMAGE SEAMLESSLY AND RAPIDLY

  • Jung, Chan-Gyu;Kim, Jun-Chul;Hwang, Hyun-Deok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.85-89
    • /
    • 2007
  • This paper presents the method to provide a fast service for user in image manipulation such as zooming and panning of huge size high resolution satellite image (e.g. Giga bytes per scene). The proposed technique is based on the hierarchical structure that has 3D-Tiling in horizontal and vertical direction to provide the image service more effectively than 2D-Tiling technique in the past does. The essence of the proposed technique is to create tiles that have optimum level of horizontal as well as vertical direction on the basis of current displaying area which changes as user manipulates huge image. So this technique provides seamless service, and will be very powerful and useful for manipulation of images of huge size without data conversion.

  • PDF

TEMPORAL VARIATIONS OF NO2 DISTRIBUTION OVER AN URBAN AREA MEASURED BY IMAGING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY

  • Lee, Han-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.302-305
    • /
    • 2007
  • During the CareBeijing campaign in September 2006, Imaging Differential Optical Absorption Spectroscopy (IDOAS) measurements were made over the city of Beijing, China using a spatial resolution of 146 pixels horizontally and 61 pixels vertically, each with a field of view of $0.133^{\circ}$ and $0.072^{\circ}$ in the horizontal and vertical directions, respectively. Using Fraunhofer reference spectra (FRS) for the evaluation of data for two consecutive days, the diurnal variation of $NO_2$ distributions was determined from data measured every single hour from 08:00 until 16:00 on September 9 and 10. Both days presented a fairly clear sky with high visibility. The setup allowed detailed images of the low surface $NO_2$ distribution over Beijing. Images with less than a 30-min temporal resolution showed variation of plume dispersal in both horizontal and vertical directions. An in-situ measurement was also conducted. Results from both instruments are interpreted by considering local emission sources and wind conditions.

  • PDF

Delineation of Groundwater and Estimation of Seepage Velocity Using High-Resolution Distributed Fiber-Optic Sensor

  • Chang, Ki-Tae;Pham, Quy-Ngoc
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.39-43
    • /
    • 2015
  • This study extends the Distributed Temperature Sensing (DTS) application to delineate the saturated zones in shallow sediment and evaluate the groundwater flow in both downward and upward directions. Dry, partially and fully saturated zones and water level in the subsurface can be recognized from this study. High resolution seepage velocity in vertical direction was estimated from the temperature data in the fully saturated zone. By a single profile, water level can be detected and seepage velocity in saturated zone can be estimated. Furthermore, thermal gradient analysis serves as a new technique to verify unsaturated and saturated zones in the subsurface. The vertical seepage velocity distribution in the recognized saturated zone is then analyzed with improvement of Bredehoeft and Papaopulos' model. This new approach provides promising potential in real-time monitoring of groundwater movement.

Simultaneous Detection of Biomolecular Interactions and Surface Topography Using Photonic Force Microscopy

  • Heo, Seung-Jin;Kim, Gi-Beom;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.402.1-402.1
    • /
    • 2014
  • Photonic force microscopy (PFM) is an optical tweezers-based scanning probe microscopy, which measures the forces in the range of fN to pN. The low stiffness leads proper to measure single molecular interaction. We introduce a novel photonic force microscopy to stably map various chemical properties as well as topographic information, utilizing weak molecular bond between probe and object's surface. First, we installed stable optical tweezers instrument, where an IR laser with 1064 nm wavelength was used as trapping source to reduce damage to biological sample. To manipulate trapped material, electric driven two-axis mirrors were used for x, y directional probe scanning and a piezo stage for z directional probe scanning. For resolution test, probe scans with vertical direction repeatedly at the same lateral position, where the vertical resolution is ~25 nm. To obtain the topography of surface which is etched glass, trapped bead scans 3-dimensionally and measures the contact position in each cycle. To acquire the chemical mapping, we design the DNA oligonucleotide pairs combining as a zipping structure, where one is attached at the surface of bead and other is arranged on surface. We measured the rupture force of molecular bonding to investigate chemical properties on the surface with various loading rate. We expect this system can realize a high-resolution multi-functional imaging technique able to acquire topographic map of objects and to distinguish difference of chemical properties between these objects simultaneously.

  • PDF