• Title/Summary/Keyword: Vertical Resolution

Search Result 355, Processing Time 0.026 seconds

Phase dependent disk averaged spectra and light curve of the Earth as an habitable exoplanet : Ray-tracing based simulation using 3D optical earth system model

  • Ryu, Dongok;Kim, Sug-Whan;Seong, Sehyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.108.1-108.1
    • /
    • 2012
  • Previously we introduced ray-tracing based 3D optical earth system model for specular and scattering properties of all components of the system (i.e. clear-sky atmosphere, land surfaces and an ocean surface). In this study, we enhanced 3-dimensional atmospheric structure with vertical atmospheric profiles for multiple layer and cloud layers using Lambertian and Mie theory. Then the phase dependent disk averaged spectra are calculated. The main results, simulated phase dependent disk averaged spectra and light curves, are compared with the 7 bands(300~1000nm) light curves data of the Earth obtained from High Resolution Instrument(HRI) in Deep Impact spacecraft during Earth flyby in 2008. We note that the results are comparable with the observation.

  • PDF

Construction of high frequency B-H Analyzer. (고주파 교류 자기특성의 컴퓨터 계측시스템 제작)

  • Kim, Ki-Uk;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1170-1172
    • /
    • 1996
  • Analog-digital converter boards for use in personal computers have recently being improved markedly, many kinds of high speed(1 MHz - 10 MHz sampling rale) and over 12-bit vertical resolution A/D boards released. It can be applicable to high frequency magnetic measurements. In measurement of magnetic properties of high frequency, digitizing oscilloscope or trasient recorder are being used. but, those price are often expensive, we constructed PC controlled A-C B-H loop tracer that can measure Bs, Br, He, permeability and may be applied about 100 Hz - 20 kHz range. it use IBM PC compatible 1 M Sample/s, 12 bit A/D converter board with SSH(Simultaneous Sample and Hold).

  • PDF

Fast Template Matching for the Recognition of Hand Vascular Pattern (정맥패턴인식을 위한 고속 원형정합)

  • Choi, Kwang-Wook;Choi, Hwan-Soo;Pyo, Kwang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.532-535
    • /
    • 2003
  • In this paper, we propose a new algorithm that can enhance the speed of template matching of hand vascular pattern person verification or recognition system. Various template matching algorithms have advantages in the matching accuracy, but most of the algorithms suffer from computational burden. To reduce the computational amount, with accuracy maintained, we propose following template matching scenario as follows. firstly, original hand vascular image is re-sampled in order to reduce spatial resolution. Secondly, reconstructed image is projected to vertical and horizontal direction, being converted to two one dimensional (1D) data. Thirdly, converted data is used to estimate spatial discrepancy between stored template image and target image. Finally, matching begins from where the estimated order is highest, and finishes when matching decision function is computed to be over certain threshold. We've applied the proposed algorithm to hand vascular pattern identification application for biometrics, and observed dramatic matching speed enhancement. This paper presents detailed explanation of the proposed algorithm and evaluation results.

  • PDF

PC-based Processing of Shallow Marine Multi-channel Seismic Data (PC기반의 천해저 다중채널 탄성파 자료의 전산처리)

  • 공영세;김국주
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.116-124
    • /
    • 1995
  • Marine, shallow seismic data have been acquired and processed by newly developed multi-channel(6 channel), PC-based digital recording and processing system. The digital processing system includes pre-processing, swell-compensation filter, frequency filter, gain correction, deconvolution, stacking, migration, and plotting. The quality of processed sections is greatly enhanced in terms of signal-to-noise ratio and vertical/horizontal resolution. The multi-channel, digital recording, acquisition and processing system proved to be and economical, efficient and easy-to-use marine shallow seismic tool.

  • PDF

Mechanical removal of surface residues on graphene for TEM characterizations

  • Dong-Gyu Kim;Sol Lee;Kwanpyo Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.28.1-28.6
    • /
    • 2020
  • Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.

A Study on the Development and usefulness of the x/y Plane and z Axis Resolution Phantom for MDCT Detector (MDCT 검출기의 x/y plane과 z축 분해능 팬텀 개발 및 유용성에 관한 연구)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • The aim of this study is to establish a new QC method that can simultaneously evaluate the resolution of the x/y plane and the z-axis by producing a phantom that can reflect exposure and reconstruction parameter of MDCT system. It was used with Aquilion ONE(Cannon Medical System, Otawara, Japan), and the examination was scanned using of 120 kV, 260 mA, and the D-FOV of 300 mm2. It produced new SSP phantom modules in which two aluminum plates inclined at 45° to a vertical axis and a transverse axis to evaluate high contrast resolution of x/y plane and z axis. And it changed factors such as the algorithm, distance from gantry iso-center. All images were reconstructed in five steps from 0.6 mm to 10.0 mm slice thickness to measure resolution of x/y plane and z-axis. The image data measured FWHM and FWTM using Profile tool of Aquarius iNtusion Edition ver. 4.4.13 P6 software(Terarecon, California, USA), and analysed SPQI and signal intensity by ImageJ program(v1.53n, National Institutes of Health, USA). It decreased by 4.09~11.99%, 4.12~35.52%, and 4.70~37.64% in slice thickness of 2.5 mm, 5.0 mm, and 10.0 mm for evaluating the high contrast resolution of x/y plane according to distance from gantry iso-center. Therefore, the high contrast resolution of the x/y plane decreased when the distance from the iso-center increased or the slice thickness increased. Additionally, the slice thicknesses of 2.5 mm, 5.0 mm, and 10.0 mm with a high algorithm increased 74.83, 15.18 and 81.25%. The FWHM was almost constant on the measured SSP graph for evaluating the accuracy of slice thickness which represents the resolution of x/y plane and z-axis, but it was measured to be higher than the nominal slice thickness set by user. The FWHM and FWTM of z-axis with axial scan mode tended to increase significantly as the distance increased from gantry iso-center than the helical mode. Particularly, the thinner slice thickness that increased error range compare with the nominal slice thickness. The SPQI increased with thick slice thickness, and that was closer to 90% in the helical scan than the axial scan. In conclusion, by producing a phantom suitable for MDCT detectors and capable of quantitative resolution evaluation, it can be used as a specific method in the management of research quality and management of outdated equipment. Thus, it is expected to contribute greatly to the discrimination of lesions in the field of CT imaging.

Development of the Accuracy Improvement Algorithm of Geopositioning of High Resolution Satellite Imagery based on RF Models (고해상도 위성영상의 RF모델 기반 지상위치의 정확도 개선 알고리즘 개발)

  • Lee, Jin-Duk;So, Jae-Kyeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.106-118
    • /
    • 2009
  • Satellite imagery with high resolution of about one meter is used widely in commerce and government applications ranging from earth observation and monitoring to national digital mapping. Due to the expensiveness of IKONOS Pro and Precision products, it is attractive to use the low-cost IKONOS Geo product with vendor-provided rational polynomial coefficients (RPCs), to produce highly accurate mapping products. The imaging geometry of IKONOS high-resolution imagery is described by RFs instead of rigorous sensor models. This paper presents four different polynomial models, that are the offset model, the scale and offset model, the Affine model, and the 2nd-order polynomial model, defined respectively in object space and image space to improve the accuracies of the RF-derived ground coordinates. Not only the algorithm for RF-based ground coordinates but also the algorithm for accuracy improvement of RF-based ground coordinates are developed which is based on the four models, The experiment also evaluates the effect of different cartographic parameters such as the number, configuration, and accuracy of ground control points on the accuracy of geopositioning. As the result of a experimental application, the root mean square errors of three dimensional ground coordinates which are first derived by vendor-provided Rational Function models were averagely 8.035m in X, 10.020m in Y and 13.318m in Z direction. After applying polynomial correction algorithm, those errors were dramatically decreased to averagely 2.791m in X, 2.520m in Y and 1.441m in Z. That is, accuracy was greatly improved by 65% in planmetry and 89% in vertical direction.

  • PDF

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

A Study on the Reproduction of 3-Dimensional Building Model from Single High Resolution Image without Meta Information (메타정보 없는 단일 고해상도 영상으로부터 3차원 건물 모델 생성에 관한 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2009
  • We expanded the 3D building information extraction method using shadow and vertical line from single high resolution image with meta information into the method for single high resolution image without meta information. Our method guesses an azimuth angle and an elevation angle of the sensor and the sun using reference building, selected by user, on an image. For test, we used an IKONOS image and an image extracted from the Google Earth. We calculated the Root Mean Square (RMS) error of heights extracted by our method using the building height extracted from stereo IKONOS image as reference, and the RMS error from the IKONOS image and the Google Earth image was under than 3 m. We also calculated the RMS error of horizontality position by comparison between building position extracted from only the IKONOS image and it from 1:1,000 digital map, and the result was under than 3 m. This test results showed that the height pattern of building models by our method was similar with it by the method using meta information.

  • PDF

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.