• 제목/요약/키워드: Vertical Impeller

검색결과 26건 처리시간 0.022초

상용 CFD코드를 이용한 입형 다단 원심펌프 성능해석 (Performance Analysis of the Vertical Multi-stage Centrifugal Pump using Commercial CFD Code)

  • 모장오;강신정;송근택;남청도;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.150-155
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is not only to confirm how much the effect of three kinds of blade inlet breadth (11mm, 11.5mm, 12mm) of impeller has influence on the performance of vertical multi-stage pump but also to make clear the cause about performance difference at the exit side of impeller and guide vane. The vertical multi-stage pump consisit of the impeller, guide, vane and cylinder. The grid of numerical analysis used to the vertical multi-stage pump is 18,000, 45,000, and 100000 cells in case of the impeller, guide vane, cylinder and total grid is 730,000 cells. The characteristics such as total pressure coefficient, total head, shaft horse power, power efficiency at the exit side of impeller and guide vane, discharge coefficient are represented according to flow rage changing.

  • PDF

CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구 (A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD)

  • 모장오;남구만;김유택;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

입형 다단 원심펌프 유동특성에 관한 수치해석 (A Numerical Analysis on Flow Characteristics of Vertical Multi-stage Centrifugal Pump)

  • 모장오;강신정;송근택;김성동;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.589-592
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller of centrifugal pump with 6 blades and guide vain with 11 blades. The numerical analysis of vertical multi-stage centrifugal pump is performed by changing flow rate from $8\;to\;26\;m^{3}/h$ at the constant 3500rpm. The characteristics such as total pressure coefficient, total head, water horse power, power efficiency are represented according to flow rate changing. In the future, we will need to perform flow calculation of vertical multi-stage centrifugal pump by considering meridional shape of impeller.

  • PDF

Study on visualization of water mixing flows in a digester equipped with a vertical impeller by using radiotracers

  • Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen;Lim, Jae Cheong
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.170-177
    • /
    • 2020
  • A mixer with a new concept design has been adapted into water treatment plants. It reportedly cuts down the energy consumption of the mixer by the new mixer, which moves vertically and creates internal flows toward its bottom. However, no experimental observations have been made on the internal flow caused by a vertical impeller. In this study, a radiotracer experiment, radioactive particle tracking (RPT) technique, and particle image velocimetry (PIV) were carried out to visualize the flow in the mixer, and compared to each other. The results show that the flow patterns from these techniques are very similar to each other, and the performance of the mixer was good enough to mix the inner materials.

임펠러를 이용한 벽면이동로봇의 설계 및 제어 (Design and Control of Wall Climbing Robot Using Impeller)

  • 구익모;송영국;문형필;박선규;최혁렬
    • 로봇학회논문지
    • /
    • 제5권3호
    • /
    • pp.177-185
    • /
    • 2010
  • In this paper, a wall climbing robot, called LAVAR, is developed, which is using an impeller for adhering. The adhesion mechanism of the robot consists of an impeller and two-layered suction seals which provide sufficient adhesion force for the robot body on the non smooth vertical wall and horizontal ceiling. The robot uses two driving-wheels and one ball-caster to maneuver the wall surface. A suspension mechanism is also used to overcome the obstacles on the wall surface. For its design, the whole adhering mechanism is analyzed and the control system is built up based on this analysis. The performances of the robot are experimentally verified on the vertical and horizontal flat surfaces.

응집효율 향상을 위한 수직형 교반기의 유동특성 연구 (A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency)

  • 김진훈;박종호
    • 한국유체기계학회 논문집
    • /
    • 제8권3호
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

응집효율 향상을 위한 수직형 교반기의 유동특성 연구 (A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency)

  • 김진훈;박종호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.267-274
    • /
    • 2004
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard k-$\epsilon$ Model and a computational fluid dynamics (CFD) simulation program- FLUENT The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floc formation at conventional water treatment plants in Korea. As a result of the CFD solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type- II (Angle $15{\~}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

  • PDF

유동장 해석을 통한 승용차 원심 회전차의 형상 설계 (Design of Centrifugal Impeller for Passenger Car by Flow Field Analysis)

  • 이동렬
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.49-55
    • /
    • 2011
  • For the purpose of the enhancement of the air conditioner performance and fuel effciency, several cases of centrifugal impeller for passenger car air conditioner have been numerically analyzed by changing central angle of blades and length of outlet for shape optimization of the impeller. Commercial CFD program Fluent 6.3.26 has been used to compute velocity, temperature, pressure and turbulence intensity that can lead numerous results. The central angles of two blades and three cases of outlet length led 4~12% and 3.5~6.4% differences of velocity and flow rate, respectively. The velocity distribution near the blade surface was axisymmetric and had a maximum value of 22.19 m/s and velocity of the vertical direction of the impeller showed linear increase with horizontal direction. At case 3 of oultet length, there existed a a minimum pressure value of -133320 Pa.

산업용 수직펌프의 흡입성능 향상 연구 (A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump)

  • 정경남;박종후;김용균;김해천
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.

저비속도 원심 회전차 외경가공에 따른 축추력 불균형을 감쇄시키기 위한 평형 피스톤 수정방안에 관한 고찰 (Modification of Balancing Piston for Trimming of Impeller Diameter for Maintaining Axial-Thrust Balance in Low-Specific-Speed Multistage Centrifugal Pumps)

  • 유일수;박무룡;윤의수
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.875-882
    • /
    • 2011
  • 회전차 외경 가공에 따른 축추력 평형 및 체적 효율 변화에 대하여 고찰하였다. 평형장치로 평형피스톤이 장착된 저비속도 다단 원심 펌프를 연구 대상으로 해석을 수행하였다. 수평축 다단 펌프와 2종의 수직축 다단 펌프에 대해 해석 수행을 한 결과, 회전차 외경 가공에 의해 펌프 전방으로 추가적인 축추력이 발생하였다. 이러한 축추력 불균형은 수평축 펌프보다 수직축 펌프에서 크게 발생하였다. 축추력 불균형을 방지하기 위해 평형피스톤의 외경을 증가시키는 방안을 제시하였고, 이를 위해 필요한 평형피스톤의 직경 변화율을 산출하였다. 피스톤의 직경 변화량은 회전차 외경 가공률에 비례하여 증가하였다. 피스톤 직경 변화량이 클수록 틈새 면적 증가로 인해 체적효율이 감소하므로, 피스톤의 길이를 함께 증가시켜 체적 효율의 감소를 방지하는 것이 효과적이다.