• Title/Summary/Keyword: Vertical Impeller

Search Result 26, Processing Time 0.026 seconds

Performance Analysis of the Vertical Multi-stage Centrifugal Pump using Commercial CFD Code (상용 CFD코드를 이용한 입형 다단 원심펌프 성능해석)

  • MO Jang-Oh;KANG Shin-Jeong;SONG Geun-Taek,;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.150-155
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is not only to confirm how much the effect of three kinds of blade inlet breadth (11mm, 11.5mm, 12mm) of impeller has influence on the performance of vertical multi-stage pump but also to make clear the cause about performance difference at the exit side of impeller and guide vane. The vertical multi-stage pump consisit of the impeller, guide, vane and cylinder. The grid of numerical analysis used to the vertical multi-stage pump is 18,000, 45,000, and 100000 cells in case of the impeller, guide vane, cylinder and total grid is 730,000 cells. The characteristics such as total pressure coefficient, total head, shaft horse power, power efficiency at the exit side of impeller and guide vane, discharge coefficient are represented according to flow rage changing.

  • PDF

A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD (CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구)

  • MO, Jang-Oh;NAM, Koo-Man;KIM, You-taek;LEE, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

A Numerical Analysis on Flow Characteristics of Vertical Multi-stage Centrifugal Pump (입형 다단 원심펌프 유동특성에 관한 수치해석)

  • Mo J. O.;Kang S. J.;Song K. T.;Kim S. D.;Lee Y. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.589-592
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller of centrifugal pump with 6 blades and guide vain with 11 blades. The numerical analysis of vertical multi-stage centrifugal pump is performed by changing flow rate from $8\;to\;26\;m^{3}/h$ at the constant 3500rpm. The characteristics such as total pressure coefficient, total head, water horse power, power efficiency are represented according to flow rate changing. In the future, we will need to perform flow calculation of vertical multi-stage centrifugal pump by considering meridional shape of impeller.

  • PDF

Study on visualization of water mixing flows in a digester equipped with a vertical impeller by using radiotracers

  • Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen;Lim, Jae Cheong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.170-177
    • /
    • 2020
  • A mixer with a new concept design has been adapted into water treatment plants. It reportedly cuts down the energy consumption of the mixer by the new mixer, which moves vertically and creates internal flows toward its bottom. However, no experimental observations have been made on the internal flow caused by a vertical impeller. In this study, a radiotracer experiment, radioactive particle tracking (RPT) technique, and particle image velocimetry (PIV) were carried out to visualize the flow in the mixer, and compared to each other. The results show that the flow patterns from these techniques are very similar to each other, and the performance of the mixer was good enough to mix the inner materials.

Design and Control of Wall Climbing Robot Using Impeller (임펠러를 이용한 벽면이동로봇의 설계 및 제어)

  • Koo, Ig-Mo;Song, Young-Kouk;Moon, Hyung-Pil;Park, Sun-Kyu;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.177-185
    • /
    • 2010
  • In this paper, a wall climbing robot, called LAVAR, is developed, which is using an impeller for adhering. The adhesion mechanism of the robot consists of an impeller and two-layered suction seals which provide sufficient adhesion force for the robot body on the non smooth vertical wall and horizontal ceiling. The robot uses two driving-wheels and one ball-caster to maneuver the wall surface. A suspension mechanism is also used to overcome the obstacles on the wall surface. For its design, the whole adhering mechanism is analyzed and the control system is built up based on this analysis. The performances of the robot are experimentally verified on the vertical and horizontal flat surfaces.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.267-274
    • /
    • 2004
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard k-$\epsilon$ Model and a computational fluid dynamics (CFD) simulation program- FLUENT The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floc formation at conventional water treatment plants in Korea. As a result of the CFD solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type- II (Angle $15{\~}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

  • PDF

Design of Centrifugal Impeller for Passenger Car by Flow Field Analysis (유동장 해석을 통한 승용차 원심 회전차의 형상 설계)

  • Lee, Dong-Ryul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 2011
  • For the purpose of the enhancement of the air conditioner performance and fuel effciency, several cases of centrifugal impeller for passenger car air conditioner have been numerically analyzed by changing central angle of blades and length of outlet for shape optimization of the impeller. Commercial CFD program Fluent 6.3.26 has been used to compute velocity, temperature, pressure and turbulence intensity that can lead numerous results. The central angles of two blades and three cases of outlet length led 4~12% and 3.5~6.4% differences of velocity and flow rate, respectively. The velocity distribution near the blade surface was axisymmetric and had a maximum value of 22.19 m/s and velocity of the vertical direction of the impeller showed linear increase with horizontal direction. At case 3 of oultet length, there existed a a minimum pressure value of -133320 Pa.

A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump (산업용 수직펌프의 흡입성능 향상 연구)

  • Chung, Kyung-Nam;Park, Jong-Hwoo;Kim, Yong-Kyun;Kim, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.

Modification of Balancing Piston for Trimming of Impeller Diameter for Maintaining Axial-Thrust Balance in Low-Specific-Speed Multistage Centrifugal Pumps (저비속도 원심 회전차 외경가공에 따른 축추력 불균형을 감쇄시키기 위한 평형 피스톤 수정방안에 관한 고찰)

  • Yoo, Il-Su;Park, Moo-Ryong;Yoon, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.875-882
    • /
    • 2011
  • In the present study, the imbalance in the axial-thrust and variation in the volumetric efficiency that occurred during the trimming of impeller diameter were investigated. The present study was focused on low-specific-speed multistage centrifugal pumps with a balancing piston as the balancing mechanism. The effects of impeller trimming on the axial-thrust balance in multistage pumps with horizontal and vertical axes were compared. The results showed that impeller trimming resulted in an additional axial-thrust acting in direction of pump inlet. The axial-thrust imbalance due to impeller trimming was more severe in the vertical-axis pumps than in the horizontal-axis pumps. The rate of increase in the diameter of the balancing piston, which was proportional to the rate of impeller trimming, was evaluated to maintain the axial-thrust balance. Furthermore, a simultaneous increase in the piston length and piston diameter was more effective for reducing the axial-thrust imbalance along with the volumetric efficiency drop.