• Title/Summary/Keyword: Vertical Eddy Current

Search Result 34, Processing Time 0.023 seconds

Parametric Study of Rectangular Coil for Eddy Current Testing of Lamination

  • Wang, Pengfei;Zeng, Zhiwei
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Eddy current testing (ECT) is an important nondestructive testing technology for the inspection of flaws in conductive materials. However, this widely used technology is not suitable for inspecting lamination when a conventional pancake coil is used because the eddy current (EC) generated by the pancake coil is parallel to the lamination and will not be perturbed. A new method using a rectangular coil placed vertical to the work piece is proposed for lamination detection. The vertical sections of the rectangular coil induce ECs that are vertical to the lamination and can be perturbed by the lamination. A parametric study of a rectangular coil by finite element analysis was performed in order to examine the capability of generating vertical EC.

A Study on the Dynamic Behavior of Eddy Current Braking System for Korean High Speed Train (고속전철의 와전류 제동장치 동적 거동특성 연구)

  • 박찬경;최강윤;현승호;곽수태
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.147-154
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for Prediction of the dynamic behavior of an eddy current braking system.

  • PDF

An Optimization of Dynamic Elements for Eddy Current Braking System of High Speed Train (고속전철의 와전류 제동장치 동적 최적화 연구)

  • Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.345-350
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for prediction of the dynamic behavior of an eddy current braking system. Five design variables and five performance index are considered for optimization through D-optimal experimental design in this paper. Also model center is used to search the optimal point for sum of performance index with variational matric method.

  • PDF

Effects of Vertical Eddy Viscosity on the Velocity Profile - Cases of Given Vertical Eddy viscosity - (鉛直 過粘性係數가 流速의 鉛直構造에 미치는 影響 - 鉛直 過粘性係數가 주어진 境遇 -)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • Vertical structures of wind-driven and tidal currents in a rectangular shaped uniform-depth basin of homogeneous water have been investigated using a mode-splitted, multi-level grid-box, hydrodynamic numerical model. The model was verified using analytical solutions for various vertical eddy viscosity profiles such as: a constant eddy viscosity, a linearly decreasing or increasing variation with depth, a quadratic variation with depth and an exponential variation with depth. Particular attention has been paid on the effects of "near-surface wall layer" on vertical shear of velocity. In numerical calculations, the whole water depth was divided into 13 levels with an unequal grid spacing. the model satisfactorily reproduces the velocity profile, but in case the eddy viscosity decreases rapidly with depth as in quadratical or exponential variation with depth, the vertical gradient of velocity near the bottom became very steep, and analytical solutions and numerical results showed some discrepancy. The vertical structures of horizontal velocity vary with both the depth-averaged value of eddy viscosity and its profiles. the velocity near the sea surface and near the bottom responded sensitively to the eddy viscosity of wall layer. For wind-driven current, the strong velocity shear was generated near the sea surface as eddy viscosity near the surface became small. For tidal current, the velocity above the sea bottom layer was almost constant regardless of the profiles of vertical eddy viscosity, but velocity in the sea bottom layer showed strong shear as eddy viscosity became small.

  • PDF

Effects of Vertical and Lateral Motion on Levitation Magnet System (상하 및 좌우진동이 부상용 전자석 시스템에 미치는영향)

  • 차귀수;배동진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.18-23
    • /
    • 1992
  • Magnet core and rail of a magnetically levitated vehicle are usually made of highly conductive materials. Accordingly, eddy currents are induced in those members. Eddy currents often lead to a decrement of levitation and guidance force. This paper has calculated the decrement of both forces due to eddy current generated by magnet's vertical and lateral motion. U-shaped electromagnet and rail were chosen as amodel of 2D finite element analysis. Calculated results proved that both forces dropped significantly at high speed. Consequently, effects of eddy current should be considered in designing the magnet and control system.

  • PDF

Analysis fund Comparison Of The Linear Eddy-Current brake systems (계자원에 따른 직선형 와전류 제동기의 특성 해석 및 작용력 비교)

  • Jang, S.M.;Kwon, J.K.;Lee, S.H.;Kim, B.S.;Cho, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1045-1047
    • /
    • 2003
  • The development of linear Eddy-Current brake systems has gradually gone beyond the adhesion limit in high-speed vehicles. In particular, the practicality of using permanent magnet in Eddy-Current brake systems is obviously recent, due to the manifold improvement in magnet materials and technology. On the basis of analytical two-dimensional field solution, this paper deals with flux density and force calculation about the linear Eddy-Current brake systems: DC excited electromagnet, Halbach magnetized and vertical magnetized permanent magnet.

  • PDF

Water Mass Distribution and Currents in the Vicinity of the Hupo Bank in Summer 2010 (2010년 하계 후포퇴 근해의 수괴분포와 해류)

  • Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • Water mass distribution and currents were investigated off the east coast of Korea near the Hupo Bank using the CTD and ADCP data from June to August 2010. The typical water masses were: (1) Tsushima Surface Water (TSW) from the East Korean Warm Current (EKWC) in the surface layer, (2) a shallow thermocline at 20-30 m depth, (3) Tsushima Middle Water (TMW) of high salinity (>34.2) below the pycnocline, (4) North Korean Cold Water (NKCW) of low salinity (<34.05) and low temperature (<4°C) in the lower layer. In June, a double eddy was observed in which a cold filament intruded cyclonically from the south around a pre-existing cold-core eddy. A burst of strong southward current was recorded in mid-August due to a warm filament from the meandering EKWC. Current in the N-S direction was predominant due to topographic effects, and the direction of the northward EKWC was frequently reversed in its direction due to the eddy-filament activity, whereas the influence of the wind was not noticeable. The vertical structure of the current was of a two-layer system, with the northward EKWC in the upper layer and weak southward flows corresponding to the North Korean Cold Current (NKCC) in the deeper layer.

Characteristics of a Warm Eddy Observed in the Ulleung Basin in July 2005

  • Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.283-296
    • /
    • 2009
  • Oceanographic survey data were analyzed to understand the characteristics of a warm eddy observed in the Ulleung Basin in July 2005. The temperature distribution at 200 db and vertical sections provided evidence of the warm eddy in the Ulleung Basin (UWE05). Based on the 5$^{\circ}C$ isothermal line on 200 db temperature, the major axis was 160 km from southwest to northeast, and the minor axis was 80 km from southeast to northwest. The homogeneous layer in the thermocline of UWE05 had mean values of 10.40$^{\circ}C$ potential temperature, 34.35 psu salinity, and 26.37 kg/m$^3$ potential density (${\sigma}_{\theta}$) and provided evidence that UWE05 also existed during the winter of 2004-2005. A warm streamer initially flowed along the circumference of UWE05 and mixed with the upper central water. Two northward current cores were found on the western side of the measured current section at the central latitude of UWE05. One was the East Korean Warm Current (EKWC) and the other was the main stream of the western part of UWE05. Geostrophic transport of the upper layer (from the surface to the isopycnal surface of 26.9 ${\sigma}_{\theta}$) was approximately 2.5 Sv in the eastern side of UWE05. However, the measured transport was twice as large as the geostrophic transport. Mass conservation of geostrophic transport was well satisfied in the upper layer. The direct current measurements and geostrophic transport analysis showed that the EKWC meandered around UWE05.

A Study on Nonlinear Interaction of Tidal Current and Wind-Induced Current using a Point Model (점모형을 이용한 조류와 취송류의 비선형 상호작용)

  • 이종찬;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The influence of vertical eddy viscosity to the nonlinear interaction of tidal current and wind-induced current is examined using a point model. A zero-equation turbulence model is derived by simplifying the q$^2$-q$^2$1 turbulence model under the assumption that the generation of turbulence kinetic energy is balanced with its dissipation and is further modified to include the depth of frictional influence properly The zero-equation turbulence model is derived and the possibility of resonance in the presence of Coriolis effect is suggested. The amplitudes of tidal currents remain the same regardless of the applied wind stress, but the over-tide component is generated due to the nonlinear interaction of tidal current and wind-induced current. Significant changes in the vertical profile of wind-induced currents can occur according to tide-induced background turbulence. The turbulence model can give rise to misleading results when applied to the wind-driven circulation in the tide-dominated sea such as Yellow Sea unless the tide-induced background turbulence is adequately included in the parameterization of vertical eddy viscosity.

  • PDF

Comparative Evaluation of Determination Methods of Vertical Eddy Viscosity for Computation of Wind-Induced Flows (풍성류 계산을 위한 연직 와점성계수 산정방법의 비교평가)

  • 정태성;이길성;오병철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.205-215
    • /
    • 1994
  • A 3-dimensional numerical model of wind-induced flows has been established. and comparative evaluation of determination methods of vertical eddy viscosity has been performed. The model uses turbulence models to calculate vertical eddy viscosity. The examined methods arp 0-equation model of functional form, 1-equation model of turbulence kinetic energy, and two 2-equation models ($textsc{k}$-$\varepsilon$ and $textsc{k}$-ι models). The evaluation includes the verification tests against experimental data for wind-driven current On a closed one-dimensional channel and a recirculating one-dimensional channel. Comparative study of turbulence models has shown that the proper distribution of turbulence scale is parabolic and the eddy viscosity is depending strongly on mixing depth due to wind.

  • PDF