• 제목/요약/키워드: Vertical Cylinder

검색결과 226건 처리시간 0.026초

정밀 위치 결정 기구에서 원통형 구동부의 자세 보정 (Correction Method for Orientation of Cylindrical Moving Part in Micro-Positioning Device)

  • 조남규;김도현;권기환
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, a new technique and theory are proposed which correct the orientation (inclination of a vertical axis) of a cylinder in vertical-micro positioning device. An algorithm for determining the orientation of the cylinder with a pair of displacement sensor units is derived and two types of the correction methods are described. To assess the performance and efficiency of the developed correction technique, the compensation errors originated from the correction algorithm and the machined characteristics of cylinder surface are evaluated from the geometrical considerations and the statistical techniques. Based upon the evaluation results, the maximum compensation error is estimated for the orientation of cylinder and the optimum correction technique is derived.

  • PDF

큰에디모의 모형을 이용한 높은 레이놀즈 수에서의 사각 기둥 후면의 와열 분석: 풍향과 풍속, 기둥 너비의 영향 (Analysis on Vortex Streets Behind a Square Cylinder at High Reynolds Number Using a Large-Eddy Simulation Model: Effects of Wind Direction, Speed, and Cylinder Width)

  • 한범순;곽경환;백종진
    • 대기
    • /
    • 제27권4호
    • /
    • pp.445-453
    • /
    • 2017
  • This study investigates turbulent flow around a square cylinder mounted on a flat surface at high Reynolds number using a large-eddy simulation (LES) model, particularly focusing on vortex streets behind the square cylinder. Total 9 simulation cases with different inflow wind directions, inflow wind speeds, and cylinder widths in the x- and y-directions are considered to examine the effects of inflow wind direction, speed, and cylinder widths on turbulent flow and vortex streets. In the control case, the inflow wind parallel to the x-direction has a maximum speed of $5m\;s^{-1}$ and the width and height of the cylinder are 50 m and 200 m, respectively. In all cases, down-drafts in front of the cylinder and updrafts, wakes, and vortex streets behind the cylinder appear. Low-speed flow below the cylinder height and high-speed flow above it are mixed behind the cylinder, resulting in strong negative vertical turbulent momentum flux at the boundary. Accordingly, the magnitude of the vertical turbulent momentum flux is the largest near the cylinder top. In the case of an inflow wind direction of $45^{\circ}$, the height of the boundary is lower than in other cases. As the inflow wind speed increases, the magnitude of the peak in the vertical profile of mean turbulent momentum flux increases due to the increase in speed difference between the low-speed and high-speed flows. As the cylinder width in the y-direction increases, the height of the boundary increases due to the enhanced updrafts near the top of the cylinder. In addition, the magnitude of the peak of the mean turbulent momentum flux increases because the low-speed flow region expands. Spectral analysis shows that the non-dimensional vortex generation frequency in the control case is 0.2 and that the cylinder width in the y-direction and the inflow wind direction affect the non-dimensional vortex generation frequency. The non-dimensional vortex generation frequency increases as the projected width of the cylinder normal to the inflow direction increases.

LP가스용 차단기능형 수평식 용기밸브에 대한 설계연구 (Design Study of Automatic Cut-off Horizontal Valve for a LPG Cylinder)

  • 김청균
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.80-84
    • /
    • 2015
  • 본 연구에서는 기존의 차단기능형 수직식 용기밸브와 새로이 개발된 수평식 용기밸브의 몸체전고와 중량에 대한 설계 데이터를 고찰하였다. 차단기능형 수평식 용기밸브의 전고는 기존의 차단기능형 수직식 용기밸브에 비해 41~42%나 획기적으로 줄어들었다. 또한, 수평식 밸브의 몸체 무게는 기존의 차단기능형 수직식 밸브에 비해 29~40%나 줄어든 결과를 얻었다. 이러한 결과는 단지 기존의 수직식 밸브에서 밸브의 여러 가지 구성요소를 수평식으로 배열을 바꾼 구조변경 설계를 통해 확보한 것이다.

Flow Characteristics Study around Two Vertical Cylinders

  • SHIN YOUNG S.;JO CHUL-HEE;KIM IN-HO
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.8-13
    • /
    • 2005
  • In a multiple array of vertical cylinders, flaw patterns are very complex and very interactive between cylinders. The patterns are turbulent and non-linear depending on various factors. The gap and flow incoming velocity of upstream can affect on the downstream cylinder. In this study, the flaw characteristics around two vertical cylinders are investigated numerically and experimentally. As the gap between cylinders is changed at fixed coming velocity, the pressure distributions around cylinders are observed and compared by experimental and numerical approaches. The F.D.M and multi-block method are applied in the study. The pressures at 12 points around the cylinder are measured in the experiment. The results can be applied in the understanding and design of multiple pile array structures.

가상경계 격자 볼츠만 법을 이용한 채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성 (Numerical study on motion characteristics of a free falling two-dimensional circular cylinder in a channel using an Immersed Boundary - Lattice Boltzmann Method)

  • 정해권;하만영;윤현식;김성줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2489-2494
    • /
    • 2008
  • The two-dimensional circular cylinder freely falling in a channel has been simulated by using Immersed boundary - lattice Boltzmann method in order to analyze the characteristics of motion originated by the interaction between the fluid and the solid. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the terminal velocity and the trajectory in the vertical and horizontal directions. In addition, the effect of the gap between the cylinder and the wall on the motion of two-dimensional circular cylinder freely falling has been revealed by taking into account a various range of the gap size. The Reynolds number in terms of the terminal velocity is diminished as the cylinder becomes close to the wall at the initial dropping position, since the repulsive force induced between the cylinder and wall constrains the vertical motion. Quantitative information about the flow variables such as the pressure coefficient and vorticity on the cylinders is highlighted.

  • PDF

Dynamic response of empty steel tanks with dome roof under vertical base motion

  • Virella, Juan C.;Godoy, Luis A.
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.119-130
    • /
    • 2009
  • This paper reports results of the structural response of empty steel tanks under vertical ground motions. The tanks are modeled using a finite element discretization using shell elements, and the vertical motion is applied and analyzed using nonlinear dynamics. Several excitation frequencies are considered, with emphasis on those that may lead to resonance of the roof. The computational results illustrate that as the base motion frequency is tuned with the frequency of the first roof-mode of the tank, the system displays large-amplitude displacements. For frequencies away from such mode, small amplitude displacements are obtained. The effect of the height of the cylinder on the dynamic response of the tank to vertical ground motion has also been investigated. The vertical acceleration of the ground motion that induces significant changes in the stiffness of the tank was found to be almost constant regardless of the height of the cylinder.

Frequency analysis of wave run-up on vertical cylinder in transitional water depth

  • Deng, Yanfei;Yang, Jianmin;Xiao, Longfei;Shen, Yugao
    • Ocean Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.201-213
    • /
    • 2014
  • Wave run-up is an important issue in offshore engineering, which is tightly related to the loads on the marine structures. In this study, a series of physical experiments have been performed to investigate the wave run-up around a vertical cylinder in transitional water depth. The wave run-ups of regular waves, irregular waves and focused waves have been presented and the characteristics in frequency domain have been investigated with the FFT and wavelet transform methods. This study focuses on the nonlinear features of the wave run-up and the interaction between the wave run-up and the cylinder. The results show that the nonlinear interaction between the waves and the structures might result wave run-up components of higher frequencies. The wave run-ups of the moderate irregular waves exhibit 2nd order nonlinear characteristics. For the focused waves, the incident waves are of strong nonlinearity and the wavelet coherence analysis reveals that the wave run-up at focal moment contains combined contributions from almost all the frequency components of the focused wave sequence and the contributions of frequency components up to 4th order harmonic levels are recommended to be included.

COMPUTATION OF THE DYNAMIC FORCE COMPONENT ON A VERTICAL CYLINDER DUE TO SECOND ORDER WAVE DIFFRACTION

  • Bhatta, Dambaru
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.45-60
    • /
    • 2008
  • Here we consider the evaluation of the the dynamic component of the second order force due to wave diffraction by a circular cylinder analytically and numerically. The cylinder is fixed, vertical, surface piercing in water of finite uniform depth. The formulation of the wave-structure interaction is based on the assumption of a homogeneous, ideal, incompressible, and inviscid fluid. The nonlinearity in the wave-structure interaction problem arises from the free surface boundary conditions, namely, dynamic and kinematic free surface boundary conditions. We expand the velocity potential and free surface elevation functions in terms of a small parameter and then consider the second order diffraction problem. After deriving the pressure using Bernoulli's equation, we obtain the analytical expression for the dynamic component of the second order force on the cylinder by integrating the pressure over the wetted surface. The computation of the dynamic force component requires only the first order velocity potential. Numerical results for the dynamic force component are presented.

  • PDF

저온인 순수물 속의 등온 수직얼음 원기둥에 의해 야기되는 자연대류의 실험적 연구 (Experimental Study of Natural Convection Adjacent to an Isothermal Vertical Ice Cylinder in Cold Pure Water)

  • 유갑종;예용택;박상희
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1737-1746
    • /
    • 1991
  • 본 연구에서는 저온의 순수물 속의 등온 수직원기둥에 의해 야기되는 열전달 특성을 구명함에 있어서 짧은 원기둥 범주에 속하는 종횡비 0.5인 얼음 원기둥을 이용 하여 실험적으로 열전달 특성을 구명하였다. 그리고 전 유동장을 가시화 하였으며, 얼음의 융해율로써 누셀트(Nusselt)수를 측정하여 기존의 결과들과 비교검토하였다.

실린더 형상에 따른 Wave Run-up 현상에 대한 연구 (Study on Wave Run-Up Phenomenon over Vertical Cylinder)

  • 이상범;한승윤;최영명;권순홍;정동우;박준수
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.62-67
    • /
    • 2013
  • In this paper, the wave run.up on a vertical cylinder is presented. Various cross sections of a cylinder were simulated using the panel method for various wave periods. Two.dimensional model tests were performed in a wave flume. The simulation results are compared with the test results. The simulation is based on the linear diffraction theory.