• Title/Summary/Keyword: Vertical Coupling Structure

Search Result 55, Processing Time 0.024 seconds

The Directional Coupler Using the Vertical Coupling Structure (수직 결합 구조를 이용한 방향성 결합기)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.445-450
    • /
    • 2017
  • In this paper, the directional coupler with half-power division is designed and fabricated by using the vertical coupling structure based on the CPW transmission-line. Even-mode and odd-mode of the vertical coupling structure can be analyzed by the conventional CPW-line and the CBCPW-line, respectively, with half thickness of the substrate. The directional coupler is designed by using the tefron substrate with the dielectric constant of 2.55 and the thickness of 0.76mm. Manufactured directional coupler has the center frequency of 2.45 GHz and the bandwidth of 66.1%. Also, the return loss and isolation are 19.52dB and 19.47dB, respectively, at the center frequency.

Vertical Coupling of Polymeric Double-Layered Waveguides Using a Stepped MMI Coupler

  • Lee, Jong-Moo;Ahn, Joon-Tae;Cho, Doo-Hee;Ju, Jung-Jin;Lee, Myung-Hyun;Kim, Kyong-Hon
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • We designed a multimode interference (MMI) coupler to use in vertical coupling of double layered polymeric waveguides and analyzed the coupling characteristics by comparing our experimental and simulation results. We found that our proposed new structure, a stepped MMI coupler, is effective in vertical coupling between waveguide layers with a short length of MMI and has a high tolerance for the variation in the structure of an MMI coupler that can be induced as errors in the fabrication process.

  • PDF

A novel vertical directional coupler with polarization independent very short coupling lengths (편광에 무관한 매우 짧은 결합 길이를 가지는 새로운 수직 방향성 결합기)

  • 정병민;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • We propose a novel vertical directional coupler with polarization independent very short coupling lengths using the double-sided deep-ridge waveguide structure which could be implemented using double-sided process to polarization insensitive deep-ridge waveguide structures and investigate the effect of various structure parameters on the coupling length. Variation of coupling length for the variation of the waveguide width is smaller than that for the variation of the core thickness. Coupling length decreases as the inner cladding layer thickness and the core thickness decrease. The waveguide width with the polarization independent coupling length decreases as the inner cladding layer thickness decreases for the same core thickness and the core thickness decreases for the same inner cladding layer thickness.

Effect of wing width and thickness on the polarization characteristics of vertical directional couplers using the Double-Sided Deep-Ridge waveguide structure (Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 날개구조부 폭과 두께가 편광 특성에 미치는 영향)

  • 정병민;윤정현;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • We investigate the effect of the wing width and thickness of a Double-Sided Deep-Ridge(DSDR) vertical directional coupler on the coupling length dependent on the polarization, We have found that the DSDR vertical directional coupler without a wing does not have polarization independent coupling lengths. The variation of the coupling length of TE and TM modes and the difference between the coupling lengths of the two modes are negligible as the wing width increases beyond the specific wing width for the same wing thickness. Thus, we can see that a DSDR vertical directional coupler has a wing width larger than the minimum wing width to obtain the polarization independent coupling length. The minimum wing width increases as the wing thickness increases for the same core thickness and as the core thickness decreases for the same wing width. Also, we have found that the minimum wing thickness is determined by the core thickness and the minimum wing thickness decreases as the core thickness increases.

Coupling variation induced side-lobe suppressed narrowband vertical coupler wavelength filter (광결합 변화에 의해 부모드 억제된 협대역 수직 결합기 파장 여과기)

  • 한상국
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.506-509
    • /
    • 1997
  • A novel narrowband wavelength bandpass filter with a large side-lobe suppression was proposed in vertical coupler structure using coupling variation in propagation direction. Combination of a half sinusoidal distributed and a slow coupling schmes was used for narrow bandwidth and small side-lobes. Simulation showed 1.5 nm passband at 1.5507 $\mu\textrm{m}$ and the side-lobes were suppressed more than 20 dB which is two times larger than that of a constant coupling filter. A monolithic two-channel wavelength demultiplexer was proposed and theoretically investigated.

  • PDF

Improvement of extinction ratio of polarization independent very short vertical directional couplers with the double-sided deep-ridge waveguide structure (편광에 관계없이 매우 짧은 결합길이를 가지는 Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 소멸비 향상)

  • 정병민;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • We show that the extinction ratio is improved using slight asymmetry in two core refractive indices of polarization independent very short vertical directional couplers with the double-sided deep-ridge (DSDR) waveguide structure. The optimum asymmetry with the maximum extinction ratio and the tolerance of the refractive index of core with the extinction ratio larger 1ha]1 30 ㏈ increase as the thickness of inner cladding layer and the two cores decrease due to the increase of the coupling strength between the two cores. Also, the device length and the tolerance of the device length with the extinction ratio larger than 30 ㏈ decrease as the thickness of the inner cladding layer and the two cores decrease due to the increase of the coupling strength between the two cores. We show that polarization independent vertical directional couplers with the DSDR waveguide structure with the device length less than 100 ${\mu}{\textrm}{m}$ and the extinction ratio larger than 30 ㏈ could be implemented.

Design of a Broadband Single Balanced Diode Mixer Using a Vortical Coupling Structure (Vertical Coupling 구조를 이용한 광대역 단일 평형 다이오드 혼합기의 설계)

  • Lee Myeong-Gil;Yun Tae-Soon;Nam Hee;Lee Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.45-50
    • /
    • 2005
  • In this paper, a broadband single balanced mixer is presented using a wideband rat-race implementation by vertical coupling. Frequency is selected as $1.5{\sim}3$ GHz for RF, $1.64{\sim}3.14$ GHz for LO, and 140 MHz for IF signals. When LO signal with 6 dBm at 2.7 GHz is injected, a conversion loss of 7.5 dB and RF to LO isolation of 30 dB are obtained. Also, an average conversion loss of 10 dB, RF to LO isolation of 30 dB, and LO to IF isolation of 45 dB are obtained for frequency band of $1.5{\sim}3$ GHz.

  • PDF

Cross-Shaped Magnetic Coupling Structure for Electric Vehicle IPT Charging Systems

  • Ren, Siyuan;Xia, Chenyang;Liu, Limin;Wu, Xiaojie;Yu, Qiang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1278-1292
    • /
    • 2018
  • Inductive power transfer (IPT) technology allows for charging of electric vehicles with security, convenience and efficiency. However, the IPT system performance is mainly affected by the magnetic coupling structure which is largely determined by the coupling coefficient. In order to get this applied to electric vehicle charging systems, the power pads should be able to transmit stronger power and be able to better sustain various forms of deviations in terms of vertical, horizontal direction and center rotation. Thus, a novel cross-shaped magnetic coupling structure for IPT charging systems is proposed. Then an optimal cross-shaped magnetic coupling structure by 3-D finite-element analysis software is obtained. At marking locations with average parking capacity and no electronic device support, a prototype of a 720*720mm cross-shaped pad is made to transmit 5kW power at a 200mm air gap, providing a $1.54m^2$ full-power free charging zone. Finally, the leakage magnetic flux density is measured. It indicates that the proposed cross-shaped pad can meet the requirements of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) according to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

Transient Response Analysis of Cylindrical Liquid Fuel-Storage Tank subject to Initial Acceleration (원통형 액체 연료탱크의 초기 가속에 따른 과도응답 해석)

  • Lee, S.Y.;Joo, Y.S.;Kim, K.W.;Cho, J.R.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.475-480
    • /
    • 2000
  • The transient dynamic-response analysis of fuel-storage tanks of flying vehicles accelerating in the vertical direction is achieved with finite element method. A fuel-storage tank is a representative example of the fluid-structure interaction problem, in which structure and fluid media interact strongly. For the accurate analysis of this complicated fluid-structure system, we employed ALE(arbitrary Lagrangian-Eulerian) coupling method. Two types of fuel-storage tanks, one with two baffles and the other without baffle, are considered to examine the effect of baffles. The fuel-storage tank with baffles shows more uniform hydrodynamic pressure distribution, resulting effective stress in structural region and faster convergence from transient to steady states. MSC/Dytran, a commercial FEM software for the 3D coupled dynamic analysis, is used for this analysis.

  • PDF