• Title/Summary/Keyword: Vertical

Search Result 16,694, Processing Time 0.035 seconds

Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

  • Park, Sang Kil;Dodaran, Asgar Ahadpour;Han, Chong Soo;Shahmirzadi, Mohammad Ebrahim Meshkati
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.947-964
    • /
    • 2014
  • Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls (${\gamma}_v=1$). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

Technical-Economical Evaluation of Chain Vertical Alignment in Underground Urban Subways: The Case of Qom Subway, Line A

  • Abdi Kordani, Ali;Mehrara Molan, Amirarsalan
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.35-39
    • /
    • 2014
  • Urban subways are one of the main parts of urban transportation networks in every city that always requires much attention in order to improve its efficiency in aspects of safety, reliability speed and costs. As the viewpoint of costs, an accurate design, especially design of vertical alignment, can have a dominant role to reduce the costs of urban railway projects. This paper seeks to evaluate the advantages and disadvantages of designing chain vertical alignment for urban subways in compare to flat vertical alignment. To achieve this goal, line A of Qom subway in Iran was selected as a case study in this research. Five parameters considered in the technical-economical evaluation: (1) energy consumption, (2) rolling stock, (3) operation, (4) civil works and geotechnical and (5) hydrological, drainage and pumping. According to the results, a power saving of about 40% have been estimated in the chain vertical alignment for the train without regenerative braking in compare with the flat vertical alignment, although the power saving was calculated less than 10% for the train with regenerative braking. Finally it was found that due to the modern rolling stock technology, the chain vertical alignment represents fewer advantages in compare to the past years.

Development of Korean Standard Vertical Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records (국내외 판내부 지진기록을 이용한 한국 표준수직설계스펙트럼의 개발)

  • Kim, Jae Kwan;Kim, Jung Han;Lee, Jin Ho;Heo, Tae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.413-424
    • /
    • 2016
  • The vertical design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. From the statistical analysis of the vertical response spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement. The ratio of vertical to horizontal response spectrum for each record is calculated. Statistical analysis of the ratios rendered the vertical to horizontal ratio (V/H ratio). Subsequently the ratio between the peak vertical ground acceleration to the horizontal one is obtained.

Electrode-Evaporation Method of III-nitride Vertical-type Single Chip LEDs

  • Kim, Kyoung Hwa;Ahn, Hyung Soo;Jeon, Injun;Cho, Chae Ryong;Jeon, Hunsoo;Yang, Min;Yi, Sam Nyung;Kim, Suck-Whan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1346-1350
    • /
    • 2018
  • An electrode-evaporation technology on both the top and bottom sides of the bare vertical-type single chip separated from the traditional substrate by cooling, was developed for III-nitride vertical-type single chip LEDs with thick GaN epilayer. The post-process of the cooling step was followed by sorting the bare vertical-type single chip LEDs into the holes in a pocket-type shadow mask for deposition of the electrodes at the top and bottom sides of bare vertical-type single chip LEDs without the traditional substrate for electrode evaporation technology for vertical-type single chip LEDs. The variation in size of the hole between the designed shadow mask and the deposited electrodes owing to the use of the designed pocket-type shadow mask is investigated. Furthermore, the electrical and the optical properties of bare vertical-type single chip LEDs deposited with two different shapes of n-type electrodes using the pocket-type shadow mask are investigated to explore the possibility of the e-beam evaporation method.

Useful Image Back-projection Properties in Cameras under Planar and Vertical Motion (평면 및 수직 운동하는 카메라에서 유용한 영상 역투영 속성들)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.912-921
    • /
    • 2022
  • Autonomous vehicles equipped with cameras, such as robots, fork lifts, or cars, can be found frequently in industry sites or usual life. Those cameras show planar motion because the vehicles usually move on a plane. Sometimes the cameras in fork lifts moves vertically. The cameras under planar and vertical motion provides useful properties for horizontal or vertical lines that can be found easily and frequently in our daily life. In this paper, some useful back-projection properties are suggested, which can be applied to horizontal or vertical line images captured by a camera under planar and vertical motion. The line images are back-projected onto a virtual plane that is parallel to the planar motion plane and has the same orientation at the camera coordinate system regardless of camera motion. The back-projected lines on the virtual plane provide useful information for the world lines corresponding to the back-projected lines, such as line direction, angle between two horizontal lines, length ratio of two horizontal lines, and vertical line direction. Through experiments with simple plane polygons, we found that the back-projection properties were useful for estimating correctly the direction and the angle for horizontal and vertical lines.

Vertical uplift of suspension equipment due to hanger slackening: Experimental and numerical investigation

  • Yang, Zhenyu;He, Chang;Mosalam, Khalid M.;Xie, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.735-745
    • /
    • 2022
  • The suspension thyristor valve can generate tremendous vertical acceleration responses in layers and large tension forces in hangers. A shaking table test of a scaled-down model of thyristor valves suspended on a hall building is performed to qualify the risk of vertical uplift of two representative types of valves, the chain valve and the rigid valve. Besides, an analytical model is established to investigate the source of the slackening of hangers. The test results show that the valves frequently experience a large vertical acceleration response. The soft spring joint can significantly reduce acceleration, but is still unable to prevent vertical uplift of the chain valve. The analytical model shows a stiffer roof and inter-story connection both contribute to a higher risk of vertical uplift for a rigid valve. In addition, the planar eccentricity and short hangers, which result in torsional motion of the valve, increase the possibility of vertical uplift for a chain valve. Therefore, spring joints with additional viscous dampers and symmetric layout in each layer are recommended for the rigid and chain valve, respectively, to prevent the uplift of valves.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants II: Vertical transport experiment using MM5 (대기오염물질의 연직 수송에 미치는 전선의 역할 II: MM5를 이용한 3차원 연직 수송 실험)

  • Nam, Jae-Cheol;Hwang, Seung-On;Park, Soon-Ung
    • Atmosphere
    • /
    • v.14 no.4
    • /
    • pp.3-18
    • /
    • 2004
  • Neglecting the vertical transport from the surface, most of the previous studies on the long-range transport of pollutants have only considered the horizontal transport caused by the free atmosphere wind. I used a three dimensional numerical model, MM5 (The fifth generation Penn State Univ./NCAR Mesoscale Model) for the simulation of vertical transport of pollutants and investigated the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. From the three dimensional simulation of MM5, the amount of pollutants transport from PBL to free atmosphere is 48% within 18 hour after the development of front, 55% within 24 hour, and 53% within 30 hour. The ratios of the vertically transported pollutant for different seasons are 62%, 60%, 54%, and 43% for spring, summer, fall, and winter, respectively. The most active areas for the vertical transport are the center of low pressure and the warm sector located east side of cold front, in which the strong upward motion slanted northward occurs. The horizontal advection of pollutants at the upper level is stronger than at the lower level simply because of the stronger wind speed. The simulation results shows the well known plum shape distribution of pollutants. The high concentration area is located in the center and north of the low pressure system, while the second highest concentration area is in the warm sector. It is shown that the most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Self-weight Consolidation (방사방향 자중압밀을 고려한 초연약 지반의 비선형 유한변형 압밀거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.495-508
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials. The installation of vertical drain provides a radial drainage path to water in the deposit soil in addition to the vertical direction. An estimation of time rate of settlement is considerably complicated when vertical drains are installed to enhance consolidation process of dredged material because the vertical drains are commonly installed before self-weight consolidation is ceased. In this paper, the vertical drain theory developed by Barron(1948) is applied to analyze the non-linear consolidation behavior considering radial drainage. The overall average degree of self-weight consolidation of the dredged soil under the condition that the water is drained in both radial and vertical directions is estimated using the Carillo(1942) formula. In addition, the Morris(2002) theory and the one-dimensional non-linear finite strain numerical model, PSDDF, are applied to analyze the self-weight consolidation in case of only the vertical drainage is considered. The new analysis approach proposed herein can simulate properly the time rate of the self-weight consolidation of dredged materials that is facilitated with vertical drains.

  • PDF

Congestion Control Algorithm for TCP Performance Enhancement by Bandwidth Measurement in Vertical Handoffs between Heterogeneous Wireless Networks (이기종 무선 망간 vortical handoff시 대역폭 측정을 통한 TCP 성능향상 혼잡제어 알고리즘)

  • Hwang An-Kyu;Lee Jae-Yong;Jung Whoi-Jin;Kim Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.84-90
    • /
    • 2006
  • With the widespread of the wireless Internet and wireless LAN, different wireless technologies such as 3G cellular networks and WLAN will cooperate to support more users and applications with higher data rate over wider areas. When a mobile node moves around in the hybrid networks, it needs to perform seamless vertical handoffs between different wireless networks to provide high performance data transmission. When an application with TCP connection in a mobile node performs a vertical handoff, TCP performance is degraded due to packet losses even though it maintains the previous TCP state information during handoff, because 3G and WLAN have different available bandwidth. In this paper, we propose a new congestion control algorithm for vertical handoff to improve the TCP performance by measuring the rough end-to-end available bandwidth and calculating the slow-start threshold. By ns-2 simulation, we show that the proposed algorithm enhances the TCP performance during vertical handoffs compared to the previous algorithms.