• Title/Summary/Keyword: Verification of equipment

Search Result 519, Processing Time 0.03 seconds

Verification of the Effectiveness of High Plank Exercise using Weightless Exercise Equipment (무중력 운동기구를 활용한 하이플랭크 운동의 효과성 검증)

  • You-Sin Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.342-347
    • /
    • 2023
  • The purpose of this study was to determine the comparison of upper arm, trunk and core muscle activities according to different performance in high Plank exercise using weightless exercise equipment. Six males(age, 23.00±0.73 years; height, 172.95±2.05 cm; body mass, 66.83±2.75 kg; and BMI, 22.33±0.72 kg/m2) completed this study as the subjects. Four type's high Plank exercises using weightless exercise equipment were performed(high plank, HP; high plank with air walker, HPAW; high plank with surf board, HPSB; high plank with waist trainer, HPWT). For the EMG analysis, we measured the body muscle activities of right side on the deltoid(DT), triceps brachii(TB), latissimus dorsi(LD), and external oblique(EO). This research's results were as follows. DT, TB, LD, & EO muscle activities were greatest during HPSB(p=.000). Therefore, these results are expected to serve as basic data for high Plank exercise using weightless exercise equipment performance applications in effective exercise programs.

Development of an Assembly-type Liquid Level Control Experimental Equipment and a Hands-on Activity Task for Vocational High School 'Chemical Process Maintenance Operation' Subject (특성화고 '화학공정유지운영' 교과를 위한 조립형 액위제어 실험장치 및 체험활동과제 개발)

  • Jung, Eun-Suk;Lee, Kyung Taek
    • 대한공업교육학회지
    • /
    • v.45 no.2
    • /
    • pp.1-20
    • /
    • 2020
  • The purpose of this study is to develop an assembly-type liquid level control experimental equipment and a hands-on activity task that can be applied to the class so that students studying the chemical industry can easily understand the liquid level control. For this purpose, the content elements related to liquid level control in the chemical industry practice course of the 2015 revised curriculum was analyzed, a hands-on activity task with an assembly-type liquid level control experimental equipment was and developed. And then, expert verification was also performed and the hands-on activity task was applied to 19 students of S meister high school. The results obtained through this are as follows. First, the existing completion-type liquid level control experimental equipment was explored, and based on this, a new assembly-type liquid level control experimental equipment that can be assembled by students and used for practices was designed and manufactured. Second. by analyzing the contents of the NCS-based 'Chemical Process Maintenance Operation' practical course of the 2015 revised curriculum, learning contents related to level control were extracted. Among the contents related to the level control, the practice with understanding the process flow chart, manufacturing the level control experimental equipment, measuring the flow rate, and checking the level control phenomenon were conducted with the assembly-type liquid level control experimental equipment to systematically learn the level control.

Novel Maritime Wireless Communication based on Mobile Technology for the Safety of Navigation: LTE-Maritime focusing on the Cell Planning and its Verification

  • Shim, Woo-Seong;Kim, Bu-Young;Park, Chan-Yong;Lee, Byeong-Hyeok
    • Journal of Navigation and Port Research
    • /
    • v.45 no.5
    • /
    • pp.231-237
    • /
    • 2021
  • Enhancing the performance of maritime wireless communication has been highlighted by the issue of cell planning in the sea area because of lack of an appropriate Propagation Loss Model (PLM). To resolve the cell planning issue in vast sea areas, it was essential to develop the (PLM) matching the intended sea area. However, there were considerable gaps between the prediction of legacy PLMs and field measurement in propagation loss and there was a need to develop the adjusted PLM (A-PLM). Therefore, cell planning was performed on this adjusted model, including modification of the base station's location, altitude, and antenna azimuth to meet the quality objectives. Furthermore, in order to verify the availability of the cell planning, Communication Service Quality Monitoring System (CS-QMS) was developed in the LTE-Maritime project to collect LTE signal quality information from the onboard equipment at regular intervals and to ensure that the service quality was high enough to satisfy the goals in each designated grid. As a result of verification, the success rate of RSRP was 95.7% for the intensive management zone (IMZ) and 96.4% for the interested zone (IZ), respectively.

A Study on Noise Control and Verification of High Pressure Steam System Using Experimental Method (실험적 방법을 이용한 고압증기 시스템의 방음설계 및 검증에 관한 연구)

  • Seok, H.I.;Lee, D.K.;Jeong, T.S.;Heo, J.H.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.112-116
    • /
    • 2011
  • The noise analysis is usually carried out in the early structure design stage for the main areas in a vessel such as an accommodation, an engine room, HVAC System and etc. If the analysis results are higher than the noise limits based on guideline, appropriate countermeasures are established to reduce noise levels and applied to the vessel. But excessive noise induced the main or auxiliary equipment and high pressure steam system is very difficult to check in the initial design stage, and local noise problems frequently appear in actual vessels. This paper deals with excessive noise of the engine control room on LNG carrier. It includes the cause analysis of excessive noise, the countermeasure, and verification. Also, it proves suitability of the countermeasure through the on-board test.

  • PDF

Multibiometrics fusion using $Acz{\acute{e}}l$-Alsina triangular norm

  • Wang, Ning;Lu, Li;Gao, Ge;Wang, Fanglin;Li, Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2420-2433
    • /
    • 2014
  • Fusing the scores of multibiometrics is a very promising approach to improve the overall system's accuracy and the verification performance. In recent years, there are several approaches towards studying score level fusion of several biometric systems. However, most of them does not consider the genuine and imposter score distributions and result in a higher equal error rate usually. In this paper, a novel score level fusion approach of different biometric systems (dual iris, thermal and visible face traits) based on $Acz{\acute{e}}l$-Alsina triangular norm is proposed. It achieves higher identification performance as well as acquires a closer genuine distance and larger imposter distance. The experimental tests are conducted on a virtual multibiometrics database, which merges the challenging CASIA-Iris-Thousand database with noisy samples and the NVIE face database with visible and thermal face images. The rigorous results suggest that significant performance improvement can be achieved after the implementation of multibiometrics. The comparative experiments also ascertain that the proposed fusion approach outperforms the state-of-art verification performance.

Simulation System Development for Verification of Autonomous Navigation Algorithm Considering Near Real-Time Maritime Traffic Information (준실시간 해상교통 정보를 반영한 자율운항 알고리즘 검증용 시뮬레이션 시스템 개발)

  • Hansol Park;Jungwook Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.473-481
    • /
    • 2023
  • In this study, a simulation system was developed to verify autonomous navigation algorithm in complex maritime traffic areas. In particular, real-world maritime traffic scenario was applied by considering near real-time maritime traffic information provided by Korean e-Navigation service. For this, a navigation simulation system of Unmanned Surface Vehicle (USV) was integrated with an e-Navigation equipment, called Electronic Chart System (ECS). To verify autonomous navigation algorithm in the simulation system, initial conditions including initial position of an own ship and a set of paths for the ship to follow are assigned by an operator. Then, considering real-world maritime traffic information obtained from the service, the simulation is implemented in which the ship repeatedly travels by avoiding surrounding obstacles (e.g., approaching ships). In this paper, the developed simulation system and its application on verification of the autonomous navigation algorithm in complex maritime traffic areas are introduced.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

Applicability of Mini-Cone Penetration Test Used in a Soil Box

  • Sugeun Jeong;Minseo Moon;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2023
  • In this study, we conducted verification of key influencing factors during cone penetration testing using the developed Mini Cone Penetration Tester (Mini-CPT), and compared the experimental results with empirical formulas to validate the equipment. The Mini-CPT was designed to measure cone penetration resistance through a Strain Gauge, and the resistance values were calibrated using a Load Cell. Moreover, the influencing factors were verified using a model ground constituted in a soil box. The primary influencing factors examined were the boundary effect of the soil box, the distance between cone penetration points, and the cone penetration speed. For the verification of these factors, the experiment was conducted with the model ground having a relative density of 63.76% in the soil box. It was observed that the sidewall effect was considerably significant, and the cone penetration resistance measured at subsequent penetration points was higher due to the influence between penetration points. However, within the speed range considered, the effect of penetration speed was almost negligible. The measured cone penetration resistance was compared with predicted values obtained from literature research, and the results were found to be similar. It is anticipated that using the developed Mini-CPT for constructing model grounds in the laboratory will lead to more accurate geotechnical property data.

Comparison of Data Measured by Doppler Instruments at 1,550 nm and 23.2 cm Wavelengths (1,550 nm와 23.2 cm 파장의 도플러 측기 관측자료 비교)

  • Geon-Myeong Lee;Byung-Hyuk Kwon;Kyung-Hun Lee;Zi-Woo Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1041-1048
    • /
    • 2023
  • Wind LiDAR and Wind Profiler are devices that produce continuous vertical distribution of wind vector in high-resolution data, and their use has recently been increasing. Although the observation and data processing methods of the two devices are similar, differences in wind detection accuracy may occur depending on weather and operation settings. introduce the characteristics of the two instruments and wind calculation methods, and apply the latest instrument verification standards to evaluate their accuracy by comparing them with the wind observed with a radiosonde. Accordingly, a new direction for performance verification following the introduction of equipment and additional necessary complements are presented.

Development of Embedded Transmission Simulator for the Verification of Forklift Shift Control Algorithm (지게차 변속제어 알고리즘 검증을 위한 임베디드 변속기 시뮬레이터 개발)

  • Gyuhong Jung
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.17-26
    • /
    • 2023
  • A forklift is an industrial vehicle that lifts or transports heavy objects using a hydraulically operated fork, and is equipped with an automatic transmission for the convenience of repetitive transportation, loading, and unloading work. The Transmission Control Unit (TCU) is a key component in charge of the shift control function of an automatic transmission. It consists of an electric circuit with an input/output signal interface function and firmware running on a microcontroller. To develop TCU firmware, the development process of shifting algorithm design, firmware programming, verification test, and performance improvement must be repeated. A simulator is a device that simulates a mechanical system having dynamic characteristics in real time and simulates various sensor signals installed in the system. The embedded transmission simulator is a simulator that is embedded in the TCU firmware. information related to the mechanical system that is necessary for TCU normal operation. In this study, an embedded transmission simulator applied to the originally developed forklift TCU firmware was designed and used to verify various forklift shift control algorithms.