• Title/Summary/Keyword: Verification by machining

Search Result 53, Processing Time 0.022 seconds

Development of Machining Simulation System using Enhanced Z Map Model (Enhanced Z map을 이용한 절삭 공정 시뮬레이션 시스템의 개발)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.551-554
    • /
    • 2002
  • The paper discusses new approach for machining operation simulation using enhanced Z map algorithm. To extract the required geometric information from NC code, suggested algorithm uses supersampling method to enhance the efficiency of a simulation process. By executing redundant Boolean operations in a grid cell and averaging down calculated data, presented algorithm can accurately represent material removal volume though tool swept volume is negligibly small. Supersampling method is the most common form of antialiasing and usually used with polygon mesh rendering in computer graphics. The key advantage of enhanced Z map model is that the data structure is same with conventional Z map model, though it can acquire higher accuracy and reliability with same or lower computation time. By simulating machining operation efficiently, this system can be used to improve the reliability and efficiency of NC machining process as well as the quality of the final product.

  • PDF

A Study on Machining Electrode for LED Mold with Shaped End-Mill (형상 엔드밀 공구를 이용한 LED금형의 방전전극 가공에 관한 연구)

  • 김형찬;이희관;황금종;공영식;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.624-627
    • /
    • 2002
  • A study on machining electrode for LEO(Light Emitted Diode) mold with shaped end-mill is presented. The electrode machining by shaped end-mill has been used for maximizing the productivity in manufacture of semiconductor mold. However, it has not been researched systematically for many difficulties such as the making of shaped end-mill, generation of tool path due to distinctive tool geometry, and so on. Tool path is generated on the shaped end-mill geometry and cutting force to provide accurate and efficient machining of electrode. The verification program can drive enhancement of productivity, selecting cutting conditions from experiment function of cutting force. Also, compensation of tooting and machina error can make the electrode accurate by modifying tool path. Therefore, the research on machining with shaped end-mill can contribute to enhancement of accuracy and productivity in building semiconductor mold.

  • PDF

The Control Technology of Cutter Path and Cutter Posture for 5-axis Control Machining (5축가공을 위한 공구경로 및 자세 제어 기술)

  • Hwang, Jong-Dae;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of cutter path and cutter posture at a cutter contact point. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various cutter paths, cutter postures types. Also, in order to increase the efficiency of 5-axis machining, it is necessary to minimize the cutter posture changes and create a continuous cutter path while avoiding interference. This study, by using an MC-space algorithm for interference avoidance and an MB-spline algorithm for continuous control, is intended to create a 5-axis machining cutter path with excellent surface quality and economic feasibility. finally, this study will verify the effectiveness of the suggested method through verification processing.

Application of CAD/CAM System to the Manufacturing and the Verification of Straight Bevel Gear with Crown Teeth (크라운 치형을 갖는 직선 베벨기어의 제작 및 검증을 위한 CAD/CAM 시스템 활용)

  • Lee, Kang-Hee;Park, Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.270-275
    • /
    • 2008
  • The straight bevel gear for automobile part has been manufactured by the cold forging instead of the gear machining tool for the mass production. The application to CAD/CAM system has been necessary in order to develop the precision product quickly by forging through the minimization of trial and error and confirm the reproducibility. In the study, the straight bevel gear with the crown teeth has been modelled by the CAD/CAM system. The master gear after the gearing test has been machined after the modelling, NC data generation and verification. The die for forging and the jig for machining has been manufactured using the master gear.

The Postprocessor Technology of for 5-axis Control Machining (5축가공을 위한 포스트프로세서 기술)

  • Jung, Hyoun-Chul;Hwang, Jong-Dae;Kim, Sang-Myung;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • In order to develop a practical postprocessor for 5-axis machining, the general equations of numerically controlled (NC) data for 5-axis configurations with not only non-orthogonal rotary axes but also orthogonal rotary axes were exactly expressed by the inverse kinematics, and a Windows-based postprocessor written in Visual Basic was developed according to the proposed algorithm. The developed postprocessor is a general system that suitable for all kinds of 5-axis machine tool with orthogonal and non-orthogonal rotary axes. Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment, the effectiveness of the proposed algorithm is confirmed. Compatibility is improved by allowing exchange of data formats such as rotational tool center position (RTCP) controlled NC data, vector post NC data, and program object file (POF) cutter location (CL)data, and convenience is increased by adding the function of work-piece origin offset. Consequently, the technology of practical post-processor for 5-axis machining is developed.

Research of Searching Algorithm for Cutting Region using Quadtree (Quadtree를 이용한 절삭 영역 탐색 기법에 관한 연구)

  • 김용현;고성림;이상규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.873-876
    • /
    • 2003
  • Z-map model is the most widely used model for NC simulation and verification. But it has several limitations to get a high precision, to apply 5 axis machining simulation. In this paper, we tried to use quadtree for searching cutting region. Quadtree representation of two dimensional objects is performed with a tree that describes the recursive subdivision. By using these quadtree model. storage requirements were reduced. And also, recursive subdivision was processed in the boundries, so, useless computation could be reduced, too. To get more high Accuracy, we applied the supersampling method in the boundaries. The Supersampling method is the most common form of the antialiasing and usually used with polygon mesh rendering in computer graphics To verify quadtree model we compared simulated results with z-map model and enhanced z-map model

  • PDF

Development of the Automatic Machining Technology for Boat's Wooden Patterns (레저보트 목형가공 자동화에 관한 연구)

  • Kim, Seong-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.174-179
    • /
    • 2007
  • The cutting automation of boat's wooden pattern is strongly required to improve the productivity and quality of boats in leisure boat industry. This paper is concerned with the development of wooden pattern machining technology by the machining center. The leisure boat is designed with a 3 dimensional design s/w. The NC cutting data are generated in a CAM s/w and are verified using verification s/w. The cutting forces are monitored to analyse the cutting process. The surface characteristics of machined surface are investigated at various cutting conditions such as spindle speed, feed speed, the cutting direction of wood, and wood material.

Machined Surface Prediction and Experimental Verification for Virtual Machining CAM System (실가공형 CAM 시스템의 구현을 위한 가공면 예측 및 실험검증)

  • 정대혁;서석환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.247-258
    • /
    • 1999
  • With the contemporary CAD/CAM system, where the tool path is generated and verified purely based on the geometric operation, geometric accuracy of the machined surface cannot be guaranteed dut to the cutting mechanics, meaning that the cutting mechanics should be incorporated in some fashion. In this paper, we incorporate the instantaneous cutting force and the tool deflection phenomena in predicting the machined surface for the finish-cut and milling operation. For the given NC dat including cutting conditions, the developed algorithm computes cutting force and deflection amount along the tool trajectory, and outputs the 3D graphic model of the machined surface together with error analysis. The validity and accuracy of the presented method has been tested by the actual cutting experiments. Experimental results and accuracy enhancement method together with implementing architecture of the VMCS (Virtual Machining CAM System) are discussed in the paper.

  • PDF

Development of a Virtual Machining System by a CAD Model Based Cutting Simulation (CAD 모델에 기초한 모사절삭을 통한 가상절삭 시스템 개발)

  • 배대위;고태조;김희술
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.83-91
    • /
    • 1999
  • In this paper, we suggest a virtual machining system that can simulate cutting forces of ball end milling at the stage of part design. Cutting forces, here, are estimated from the machanistic model that uses the concept of specific cutting farce coefficient. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived from the Z-map data of a CAD model. That is, chip load is the height difference between the cutting tool and the workpiece at an arbitrary position. The tool contact point is referred from the cutter location data. On the other hand, the workpiece height is acquired from the Z-map model of a CAD data. From the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF

Development of a Virtual Machining System by a CAD Model Based Cutting Simulation (CAD 모델에 기초한 모사절삭을 통한 가상절삭시스템 개발)

  • 배대위;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.942-946
    • /
    • 1997
  • In this research,we suggest a virtual machining system that can simulate sutting forces at the stage of design. Cutting forces,here, are modeled form the machanistic model of the ball end milling. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived form the z-map data of a CAD model. That is, chip load is the height difference between the cutting tool contact point and the workpiece at arbitrary position. The tool contact point is referred from the cutter location. Form the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF