• Title/Summary/Keyword: Verification Algorithm

Search Result 1,149, Processing Time 0.03 seconds

Rolling Motion Simulation in the Time Domain and Ship Motion Experiment for Algorithm Verification for Fishing Vessel Capsizing Alarm Systems (어선전복경보시스템 알고리즘 검증을 위한 어선 횡동요 시험 및 시간영역 횡동요 시뮬레이션)

  • Yang, Young-Jun;Kwon, Soo-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.956-964
    • /
    • 2017
  • This study contributes to deepening understand of the characteristics of fishing vessel rolling motions to improve the development of capsizing alarm systems. A time domain rolling motion simulation was performed. In order to verify capsizing alarm systems, it is necessary to carry out experiments assuming a capsizing situation and perform actual fishing vessel measurements, but these tasks are impossible due to the danger of such a situation. However, in many capsizing accidents, a close connection with rolling motion was found. Accordingly, the rolling motion of a fishing boat, which is the core of a fishing vessel capsizing alarm system, has been accurately measured and a time domain based on a rolling motion simulation has been performed. This information was used to verify the algorithm for a capsizing alarm system. Firstly, the characteristics of rolling motion were measured through a motion experiment. For small vessels such as fishing vessels, it was difficult to interpret viscosity due to analytical methods including CFD and potential codes. Therefore, an experiment was carried out focusing on rolling motion and a rolling mode RAO was derived.

A Link-Label Based Node-to-Link Optimal Path Algorithm Considering Non Additive Path Cost (비가산성 경로비용을 반영한 링크표지기반 Node-to-Link 최적경로탐색)

  • Lee, Mee Young;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2019
  • Existing node-to-node based optimal path searching is built on the assumption that all destination nodes can be arrived at from an origin node. However, the recent appearance of the adaptive path search algorithm has meant that the optimal path solution cannot be derived in node-to-node path search. In order to reflect transportation data at the links in real-time, the necessity of the node-to-link (or link-to-node; NL) problem is being recognized. This research assumes existence of a network with link-label and non-additive path costs as a solution to the node-to-link optimal path problem. At the intersections in which the link-label has a turn penalty, the network retains its shape. Non-additive path cost requires that M-similar paths be enumerated so that the ideal path can be ascertained. In this, the research proposes direction deletion and turn restriction so that regulation of the loop in the link-label entry-link-based network transformation method will ensure that an optimal solution is derived up until the final link. Using this method on a case study shows that the proposed method derives the optimal solution through learning. The research concludes by bringing to light the necessity of verification in large-scale networks.

Establishment of Integrated Design Bases Management System of APR1400 Using BIM based Algorithm (BIM기반 Algorithm을 활용한 APR1400 설계기준 통합관리 체계 구축)

  • Shin, Jaeseop;Choi, Jaepil
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.5
    • /
    • pp.52-60
    • /
    • 2019
  • The APR1400 is a 1400MWe nuclear power plant developed through national technology development project over a period about 10years. Approximately 65,000 design drawings are produced for APR1400 construction. In order to maintain consistency among numerous drawings, the highest level of design bases drawings (DBDs) are created according to design bases and this is used in the subsequent design. However, DBDs are produced and managed on a document basis and they are managed various field, it was difficult to accurately reflect the design bases information in the subsequent design. Therefore, this study recognizes limitations of the document based DBDs and develops a system that can accurately reflect the design bases information to subsequent design by adopting BIM based design bases integrated information system. Especially, by introducing DBIL(Design Bases Information Layer) concept, DBIL was created and analyzed based on five design bases(Physical protection, Fire protection, Internal missile protection, Internal flood protection, Radiation protection) applied to APR1400. In the final result DBIL set and Datasheet are integrated of room, design bases information, building data(wall, slab, door, window, penetrations). So it can be used for subsequent design automation and design verification. Furthermore, it is expected that APR1400 DBILs data can be used extensively in constructability and design economics analysis through comparison with next generation nuclear power plant.

Roll Angle Estimation of Slowly Rolling Guided Munition With Time-delayed Measurement and Its Verification Through Flight Experiment (지연된 측정치를 가진 저속 회전 유도형 탄약의 롤각 추정 및 비행 실험을 통한 검증)

  • Park, Junwoo;Ahn, Hyungjoo;Jung, Sungmin;Noh, Junyoung;Hong, Kyungwoo;Jang, Kwangwoo;Kim, Sungjoong;Bang, Hyochoong;Kim, Jin-Won;Heo, Junhoe;Pak, Chang-Ho;Seo, Songwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.373-381
    • /
    • 2021
  • This paper details the result of flight experiment that examines performance of roll angle estimation algorithm of slowly rolling munition taking time delay of measurement into account when measurement comes in delayed fashion. As the measurement is passed through low pass filter for numerical stabilization and de-noising purpose which induces time delay, we design augmented state Kalman filter that incorporates distribution models of stochastic delay over time. Flight experiment was conducted to verify the algorithm at around 250m high AGL(Above Ground Level) conveying velocity of 28m/s from fixed-wing mother plane to the munition. Munition was made spun with respect to its roll axis using internal reaction wheel afterward. Numerical comparison of proposing method's roll estimation performance with that of commercial aerospace graded GPS/INS shows that proposed filter design can effectively compensate time delay of measurement.

Design and Fabrication of Binary Diffractive Optical Elements for the Creation of Pseudorandom Dot Arrays of Uniform Brightness (균일 밝기 랜덤 도트 어레이 생성을 위한 이진 회절광학소자 설계 및 제작)

  • Lee, Soo Yeon;Lee, Jun Ho;Kim, Young-Gwang;Rhee, Hyug-Gyo;Lee, Munseob
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • In this paper, we report the design and fabrication of binary diffractive optical elements (DOEs) for random-dot-pattern projection for Schlieren imaging. We selected the binary phase level and a pitch of 10 ㎛ for the DOE, based on cost effectiveness and ease of manufacture. We designed the binary DOE using an iterative Fourier-transform algorithm with binary phase optimization. During initial optimization, we applied a computer-generated pseudorandom dot pattern of uniform intensity as a target pattern, and found significant intensity nonuniformity across the field. Based on the evaluation of the initial optimization, we weighted the target random dot pattern with Gaussian profiles to improve the intensity uniformity, resulting in the improvement of uniformity from 52.7% to 90.8%. We verified the design performance by fabricating the designed binary DOE and a beam projector, to which the same was applied. The verification confirmed that the projector produced over 10,000 random dot patterns over 430 mm × 430 mm at a distance of 5 meters, as designed, but had a slightly less uniformity of 84.5%. The fabrication errors of the DOE, mainly edge blurring and spacing errors, were strong possibilities for the difference.

Development of Ship Valuation Model by Neural Network (신경망기법을 활용한 선박 가치평가 모델 개발)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • The purpose of this study is to develop the ship valuation model by utilizing the neural network model. The target of the valuation was secondhand VLCC. The variables were set as major factors inducing changes in the value of ship through prior research, and the corresponding data were collected on a monthly basis from January 2000 to August 2020. To determine the stability of subsequent variables, a multi-collinearity test was carried out and finally the research structure was designed by selecting six independent variables and one dependent variable. Based on this structure, a total of nine simulation models were designed using linear regression, neural network regression, and random forest algorithm. In addition, the accuracy of the evaluation results are improved through comparative verification between each model. As a result of the evaluation, it was found that the most accurate when the neural network regression model, which consist of a hidden layer composed of two layers, was simulated through comparison with actual VLCC values. The possible implications of this study first, creative research in terms of applying neural network model to ship valuation; this deviates from the existing formalized evaluation techniques. Second, the objectivity of research results was enhanced from a dynamic perspective by analyzing and predicting the factors of changes in the shipping. market.

A Study on the Application of Object Detection Method in Construction Site through Real Case Analysis (사례분석을 통한 객체검출 기술의 건설현장 적용 방안에 관한 연구)

  • Lee, Kiseok;Kang, Sungwon;Shin, Yoonseok
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.269-279
    • /
    • 2022
  • Purpose: The purpose of this study is to develop a deep learning-based personal protective equipment detection model for disaster prevention at construction sites, and to apply it to actual construction sites and to analyze the results. Method: In the method of conducting this study, the dataset on the real environment was constructed and the developed personal protective equipment(PPE) detection model was applied. The PPE detection model mainly consists of worker detection and PPE classification model.The worker detection model uses a deep learning-based algorithm to build a dataset obtained from the actual field to learn and detect workers, and the PPE classification model applies the PPE detection algorithm learned from the worker detection area extracted from the work detection model. For verification of the proposed model, experimental results were derived from data obtained from three construction sites. Results: The application of the PPE recognition model to construction site brings up the problems related to mis-recognition and non-recognition. Conclusions: The analysis outcomes were produced to apply the object recognition technology to a construction site, and the need for follow-up research was suggested through representative cases of worker recognition and non-recognition, and mis-recognition of personal protective equipment.

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

Verification of Ground Subsidence Risk Map Based on Underground Cavity Data Using DNN Technique (DNN 기법을 활용한 지하공동 데이터기반의 지반침하 위험 지도 작성)

  • Han Eung Kim;Chang Hun Kim;Tae Geon Kim;Jeong Jun Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.334-343
    • /
    • 2023
  • Purpose: In this study, the cavity data found through ground cavity exploration was combined with underground facilities to derive a correlation, and the ground subsidence prediction map was verified based on the AI algorithm. Method: The study was conducted in three stages. The stage of data investigation and big data collection related to risk assessment. Data pre-processing steps for AI analysis. And it is the step of verifying the ground subsidence risk prediction map using the AI algorithm. Result: By analyzing the ground subsidence risk prediction map prepared, it was possible to confirm the distribution of risk grades in three stages of emergency, priority, and general for Busanjin-gu and Saha-gu. In addition, by arranging the predicted ground subsidence risk ratings for each section of the road route, it was confirmed that 3 out of 61 sections in Busanjin-gu and 7 out of 68 sections in Sahagu included roads with emergency ratings. Conclusion: Based on the verified ground subsidence risk prediction map, it is possible to provide citizens with a safe road environment by setting the exploration section according to the risk level and conducting investigation.

Multi-objective Genetic Algorism Model for Determining an Optimal Capital Structure of Privately-Financed Infrastructure Projects (민간투자사업의 최적 자본구조 결정을 위한 다목적 유전자 알고리즘 모델에 관한 연구)

  • Yun, Sungmin;Han, Seung Heon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.107-117
    • /
    • 2008
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.