Kim, Jin-Kwon;Shin, Kwang-Soo;Shin, Hang-Sik;Lee, Myoung-Ho
Proceedings of the KIEE Conference
/
2007.07a
/
pp.1924-1925
/
2007
본 논문에서는 부정맥 판별을 위한 전처리 과정으로 PCA, LDA, ICA를 바탕으로 하여 정확도를 비교하여 보았다. 각각의 전처리는 고유의 특성을 가지고 있으며 본 논문의 목적은 부정맥 판별상 어떤 전처리가 더욱 정확성의 면에서 효과적인지를 알아보는 것이다. 본 논문의 데이터는 MIT-BIH에 기반하고 있으며, Beat의 분류는 정상(Normal), 좌각차단(Left Bundle Branch Block, LBBB), 우각차단(Right Bundle Branch Block, RBBB), 조기심실수축(Premature Ventricular Contraction, PVC), 조기심방수축(Atrial Premature Beat, APB), paced Beat, 심실보충수축(Ventricular Escape Beat)로 나누었다. 실험적 결과는 PCA-BPNN의 경우 95.53%, ICA-BPNN의 경우 93.95%, LDA-BPNN의 경우 96.42%로 LDA가 가장 ECG 부정맥 판별 응용에 있어 가장 효율적인 방법으로 나타났다.
The bio signals essentially have different characteristics in each person. And the main purpose of automatic diagnosis algorithm based on bio signals focuses on discriminating differences of abnormal state from personal differences. In this paper, we propose automatic ECG diagnosis algorithm which discriminates normal heart beats from premature ventricular contraction using optimization of wavelet parameterization to solve that problem. The proposed algorithm optimizes wavelet parameter to let energy of signal be concentrated on specific scale band. We can reduce the personal differences and consequently highlight the differences coming from arrhythmia via this process. The proposed algorithm using ELM as a classifier show high discrimination performance between normal beat and PVC. From the experimental results on MIT-BIH arrhythmia database the performances of the proposed algorithm are 98.1% in accuracy, 93.0% in sensitivity, 96.4% in positive predictivity, and 0.8% in false positive rate. This results are similar or higher then results of existing researches in spite of small human intervention.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.2
/
pp.988-1001
/
2018
Arrhythmia has recently emerged as one of the major causes of death in Koreans. Premature Ventricular Contraction (PVC) is the most common arrhythmia that can be found in clinical practice, and it may be a precursor to dangerous arrhythmias, such as paroxysmal insomnia, ventricular fibrillation, and coronary artery disease. Therefore, we need for a method that can detect an abnormal heart beat and diagnose arrhythmia early. We extracted the features corresponding to the QRS pattern from the subject's ECG signal and classify the premature ventricular contraction waveform using the features. We modified the weighting and bias values based on the error back-propagation algorithm through learning data. We classify the normal signal and the premature ventricular contraction signal through the modified weights and deflection values. MIT-BIH arrhythmia data sets were used for performance tests. We used RR interval, QS interval, QR amplitude and RS amplitude features. And the hidden layer with two nodes is composed of two layers to form a total three layers (input layer 0, output layer 3).
Journal of the Korea Society of Computer and Information
/
v.22
no.5
/
pp.65-72
/
2017
Premature Ventricular Contraction(PVC) arrhythmia is most common abnormal-heart rhythm that may increase mortal risk of a cardiac patient. Thus, it is very important issue to identify the specular portraits of PVC pattern especially from the patient. In this paper, we propose a new method to extract the characteristics of PVC pattern by applying K-means machine learning algorithm on Heart Rate Variability depicted in Poinecare plot. For the quantitative analysis to distinguish the trend of cluster patterns between normal sinus rhythm and PVC beat, the Euclidean distance measure was sought between the clusters. Experimental simulations on MIT-BIH arrhythmia database draw the fact that the distance measure on the cluster is valid for differentiating the pattern-traits of PVC beats. Therefore, we proposed a method that can offer the simple remedy to identify the attributes of PVC beats in terms of K-means clusters especially in the long-period Electrocardiogram(ECG).
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.9
/
pp.2021-2030
/
2012
Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Particularly, in the healthcare system that must continuously monitor patient's situation, it is necessary to process ECG (Electrocardiography) signal in realtime. In other words, the design of algorithm that exactly detects R wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, the patient adaptive pattern matching algorithm for the classification of PVC is presented in this paper. For this purpose, we detected R wave through the preprocessing method, adaptive threshold and window. Also, we applied pattern matching method to classify each patient's normal cardiac behavior through the Hash function. The performance of R wave detection and abnormal beat classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.33% in R wave detection and the rate of 0.32% in abnormal beat classification error.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.11
/
pp.2391-2398
/
2009
Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Most of the algorithms detecting PVC reported in literature is not always feasible due to the presence of noise and P wave making the detection difficult, and the process being time consuming and ineffective for real time analysis. To solve this problem, a new approach for the detection of PVC is presented based rhythm analysis and beat matching in this paper. For this purpose, the ECG signals are first processed by the usual preprocessing method and R wave was detected. The algorithm that decides beat type using the rhythm analysis of RR interval and beat matching of QRS width is developed. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate sensitivity of 99.74%, positive predictivity of 99.81% and sensitivity of 93.91%, positive predictivity of 96.48% accuracy respectively for R wave and PVC detection.
This paper presents an approach to detect premature ventricular contraction(PVC) using discrete wavelet transform and fuzzy neural network. As the input of the algorithm, we use 14 coefficients of d3, d4, and d5, which are transformed by a discrete wavelet transform(DWT). This paper uses a neural network with weighted fuzzy membership functions(NEWFM) to diagnose PVC. The NEWFM discussed in this paper classifies a normal beat and a PVC beat. The size of the window of DWT is $-31/360{\sim}+32/360$ second(64 samples) whose center is the R wave. Using the seven records of the MIT-BIH arrhythmia database used in Shyu's paper, the classification performance of the proposed algorithm is 99.91%, which outperforms the 97.04% of Shyu's analysis. Using the forty records of the M1T-BIH arrhythmia database used in Inan's paper, the classification performance of the proposed algorithm is 98.01%, which outperforms 96.85% of Inan's one. The SE and SP of the proposed algorithm are 84.67% and 99.39%, which outperforms the 82.57% and 98.33%, respectively, of Inan's study.
Large variation in electrocardiogram (ECG) waveforms continues to present challenges in defining R-wave locations in ECG signals. This research presents a procedure to extract the R-wave locations by forward-backward (FB) algorithm and classify the arrhythmic beat conditions by using RR intervals. The FB algorithm shows forward and backward searching rules from QRS onset and eliminates lower-amplitude signals near the baseline using a statistical process control concept. The proposed algorithm was trained the optimal parameters by using MIT-BIH arrhythmia database (MITDB), and it was verified by actual Holter ECG signals from a local hospital. The signals are classified into normal (N) and three arrhythmia beat types including premature ventricular contraction (PVC), ventricular flutter/fibrillation (VF), and second-degree heart block (BII) beat. This work produces 98.54% accuracy in the detection of R-wave location; 98.68% for N beats; 91.17% for PVC beats; and 87.2% for VF beats in the collected Holter ECG signals, and the results are better than what are reported in literature.
We report the case of a 17-year-old girl who presented with an indentation in the right ventricle caused by an incomplete pericardium on preoperative 3-dimensional reconstructed computed tomography. She was to undergo surgery for a partial atrioventricular septal defect and secundum atrial septal defect. Preoperative electrocardiography revealed occasional premature ventricular beats. We found the absence of the left side of the pericardium intraoperatively, and this absence caused strangulation of the diaphragmatic surface of the right ventricle. After correcting the lesion, the patient's rhythm disturbances improved.
Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and the prevention of possible life threatening cardiac diseases. Most methods for detecting arrhythmia require pp interval, or the diversity of P wave morphology, but they are difficult to detect the p wave signal because of various noise types. Thus, it is necessary to use noise-free R wave. So, the new approach for the detection of PVC is presented based on the rhythm analysis and the beat matching in this paper. For this purpose, we removed baseline wandering of low frequency band and made summed signals that are composed of two high frequency bands including the frequency component of QRS complex using the wavelet filter. And then we designed R wave detection algorithm using the adaptive threshold and window through RR interval. Also, we developed algorithm to classify PVC using RR interval. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate average detection rate of 99.76%, sensitivity of 99.30% and specificity of 98.66%; accuracy respectively for R wave and PVC detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.