• Title/Summary/Keyword: Ventilation rate

Search Result 821, Processing Time 0.025 seconds

Uncertainty Analysis of Interzonal Airflow Rates by Tracer Gas Methods (추적가스를 이용한 실간환기량 산정방법에 따른 불확실성 해석)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.529-534
    • /
    • 2008
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

  • PDF

A Study on Tracer Gas Methodology to Measure Interzonal Airflow Rates (실간환기량 측정을 위한 추적가스 실험방법론에 관한 연구)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.606-612
    • /
    • 2009
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

Analysis of Air Flow Rate Distribution for the Bathroom Exhaust System in High-rise Buildings Using T-method (T-method를 이용한 고층 아파트 욕실 배기 시스템의 층별 유량분배 해석)

  • 문종선;강석윤;이승철;유호선;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2004
  • Based on the T-method, a new scheme for predicting air flow rate distribution in a bathroom exhaust system is developed. Introduction of individual duct route enables us to disintegrate a complicated multi-fan ductwork into a set of simultaneous single-fan subsystems. The scheme is validated via the analysis of a well-posed test problem, showing physical consistency. In order to demonstrate the utility and capability of our method, the bathroom ventilation system in a 20-story residential building is selected as an example. Under the typical design condition, the air flow rate of each exhaust fan at the balancing point is successfully predicted, and such information can lead to an engineering estimation for the overall system performance. While some deficiencies in ventilation are found at bathrooms at lower floors with 6mmAq-rated exhaust fans, they disappear over the whole building by using fans of enhanced static pressures, 7 and 8mmAq. Finally the present scheme seems to be useful for practical design of multi-branched, multi-fan ventilation systems.

Numerical Analysis of Ventilation System for Dust Removal Inside the Enclosed Conveyor Belt (밀폐된 컨베이어 벨트 내부의 분진 제거를 위한 환기 시스템의 수치해석적 분석)

  • Yeseung Lee;Ki Jin Jeong;Jong Min Kim;Jung-Hun Noh
    • Particle and aerosol research
    • /
    • v.19 no.2
    • /
    • pp.43-53
    • /
    • 2023
  • In this study, the ventilation system of the enclosed conveyor belt for coal transportation was evaluated, and the particle removal efficiency according to the ventilation conditions was identified using computational fluid dynamics and particle behavior analysis. The most effective way to remove dust generated inside the closed conveyor belt is to adjust the position of the exhaust port of the duct so that the air is exhausted around the rear of the conveyor belt. And this method seems to work for another narrow and long spaces where air enters in one direction. In addition, when the air flow rate of the each duct was less than 300 CMM, it was efficient to increase the flow rate of the duct located at the rear of the conveyor belt, and when the flow rate of the each duct was higher than 300 CMM, it was efficient to increase the flow rate of the duct located at the front of the conveyor belt.

Evaluation of Ventilation Rate and External Air Mixing Ratio in Semi-closed Loop Ventilation System of Pig House Considering Pressure Loss (압력손실을 고려한 양돈시설의 반폐회로 환기시스템의 환기량 및 혼합비율 평가)

  • Park You-me;Kim Rack-woo;Kim Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • The increase in the rearing intensity of pigs has caused deterioration in the pig house's internal environment such as temperature, humidity, ammonia gas, and so on. Traditionally, the widely used method to control the internal environment was through the manipulation of the ventilation system. However, the conventional ventilation system had a limitation to control the internal environment, prevent livestock disease, save energy, and reduce odor emission. To overcome this problem, the air-recirculated ventilation system was suggested. This system has a semi-closed loop ventilation type. For designing this system, it was essential to evaluate the ventilation rates considering the pressure loss of ducts. Therefore, in this study, pressure loss calculation and experiment were conducted for the quantitative ventilation design of a semi-closed loop system. The results of the experiment showed that the inlet through which external air flows should always be opened. In addition, it was also found that for the optimum design of the semi-closed loop ventilation system, it was appropriate to install a damper or a backflow prevention device rather than a ventilation fan.

A Comparison of Clinical Efficacy of Weaning Method Between the Mode of Intermittent Mandatory Ventilation and Intermittent Mandatory Ventilation Plus Pressure Support (기계적 호흡 치료로부터의 이탈방법으로서 Intermittent Mandatory Ventilation 단독 사용과 Pressure Support를 병용한 Intermittent Mandatory Ventilation의 비교)

  • Choi, Jeong-Eun;Koh, Youn-Suck;Cho, Won-Kyoung;Lim, Chae-Man;Kim, Woo-Sung;Park, Pyung-Hwan;Choi, Jong-Moo;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.372-378
    • /
    • 1994
  • Background: Pressure support ventilation(PSV) is a new form of mechanical ventilatory support that assists spontaneous inspiraory effort of an intubated patient with a clinician-selected amount of positive airway pressure. Low level pressure support during inspiration can overcome the resistive component of inspiratory work imposed by an endotracheal tube. However the clinical efficacy of PSV as a weaning method has not been established yet. Object: The aim of study was to evaluate the efficacy of PSV when it is added to intermittent mandatory ventilation(IMV) in facilitating weaning precess compaired to IMV mode alone. Method: When the subject patients became clinically stable with their arterial blood gas analysis in acceptable range, they underwent weaning process either by IMV alone or by IMV plus PSV. The level of pressure support was held constant throught the weaning period. For the patients who required mechanical ventilation for less than 72 hr, 2h weaning trial was performed with IMV rate starting from 6/min. For the patients who required mechanical ventilation more than 72 hr, 7 hr weaning trial was performed with IMV rate starting from 8/min. For the patients who failed three consecutive trials of weaning, retrial of weaning was attempted over 3 days with IMV rate starting from 8/min. Clinical characteristics, APACHE II score and nutritional status were compared. For all patients, heart rate, mean blood pressure and respiratory rate were mornitored for 48 hrs after weaning trial started. Results: The total number of weaning trial was 37 in 23 patients(18 by IMV, 19 by IMV+PSV). Total ventilation time, APACHE II score and nutritional status were not statistically different between the two groups. The weaning success rate were not statistically different(38.3% by IMV, 42.1% by IMV+PSV) and the changes of mean blood pressure, heart rate, respiratory rate during first 48 hours were not different between the two groups. Conclusion: Low level PSV when added to IMV for weaning trial does not seem to improve the success rate of weaning from mechanical ventilation. PSV at 10cm $H_2O$ did not induce significant physiologic changes during weaning process.

  • PDF

The Reduced Model Test for the Determination of Ventilation Velocity to Prevent Backflow in Uni-directional Road Tunnel during a Fire Disaster (일방향 도로터널내 화재 발생시 역류를 막는 환기속도결정에 관한 축소모형실험)

  • 유영일;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • In the case of a fire disaster in a uni-directional road tunnel, it is important to determine the critical ventilation velocity to prevent the backflow travelling toward the tunnel exit where vehicles are stopped. The critical ventilation velocity is horizontal velocity to prevent hot smoke from moving toward the tunnel exit. According to Froude modelling, the model tunnel whcih was 300mm in diameter and 21 m in length was made of acryl tubes. Inner section of acryl tubes was clothed with polycarbonate. 1/20 scaled model vehicles were installed to simulate the situation that vehicles are stopped in the tunnel exit. Methanol in a pool type burner was burned in the middle of tunnel to simulate a fire hazard. In this study, the basis of determining the critical ventilation velocity is the ventilation flow rate that is able to maintain the allowable CO concentration in the tunnel section. We assumed that the allowable CO concentration was backflow dispersion index. Futhermore, We intended to find out CO distribution and temperature distribution according as we changed ventilation velocity. The results of this study were that no backflow happened when ventilation velocity was 0.52 m/s in the case of 5.75 kW. If we adapt these results of a fire disaster releasing 10MW heat capacity in real tunnel which is 400m in length, no backflow happens when ventilation velocity is 2.31m/s. After we figured out dimensionless heat release rate and dimensionless ventilation velocity of model test and those of real test to verify experimental correctness, we tried to find out correlation between experimental results of model tunnel and those of real tunnel.

  • PDF

Measurements and CFD Analysis for Release Rate of CO2 and Characteristics of Natural Ventilation in Lecture Room (강의실 CO2 발생률과 자연환기 특성의 측정 및 CFD 분석)

  • Lee, Donghae;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • Lecture rooms are crowded with many attendees. Moreover, they rely significantly on the natural ventilation through windows for removing and controlling indoor contaminants such as CO2. With the aim of broadening the understanding of the characteristics of natural ventilation phenomena in lecture rooms, the average individual CO2 release rates of attendees were measured during the course of a lecture and compared with previously reported CO2 release rates. In addition, the effects of natural ventilation through windows on the time-variant CO2 concentrations in the center of the lecture room were measured and analyzed. Moreover, details about the overall and regional CO2 concentrations, as well as the air flows in the lecture room, were simulated and analyzed with computational fluid dynamics software, Fluent 2020 R2. It was found that the average individual CO2 release rates were slightly slower than previously reported rates. The local CO2 concentrations in the lecture room for regions with a high density of attendees increased over a short period of time, although the natural ventilation was already started by opening the windows. The overall CO2 concentration in the lecture room rapidly decreased in the early stage of ventilation, but declined very slowly after a longer period of ventilation time. Therefore, in order to enhance the efficiency of a lecture room's natural ventilation, it is recommended to homogeneously distribute the attendees in the lecture room, and to frequently open the windows for short periods of time.

Experimental Study on Wind-driven Ventilation in Basement Parking Lots of Apartment (풍동실험을 통한 공동주택 지하주차장의 자연환기 성능 연구)

  • Lee, Si-Woong;Roh, Ji-Woong
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.103-107
    • /
    • 2004
  • This paper aims for evaluating the wind-driven ventilation in basement parking lots of apartment. Wind tunnel tests coupled with tracer gas method were conducted, and classified by wind directions and opening types. The test results showed that, as for wind-driven ventilations, stack type openings were more successful than scuttle vent. Finally, according to Weibull distribution in Seoul, yearly averaged wind-driven ventilation rate was calculated.

A Development of Coupled Simulation Tool to Evaluate Performance of Ventilation System (환기시스템의 성능평가를 위한 통합 시뮬레이션 Tool의 개발)

  • Cho Wang-Hee;Song Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.112-121
    • /
    • 2006
  • To evaluate the performance of ventilation system properly, the correlations among the ventilation rate, indoor air-quality and cooling/heating load should be analysed. In this study, simulation tool to analyze the performance of ventilation system was developed. The simulation tool is based on the TRNSYS and some modules to calculate concentration of pollutants with the operation of ventilation system and to decide the signal of ventilation system were newly developed in this study. And these modules coupled with building load and heating/cooling simulation modules. To verify the validity of developed simulation tool, comparison study between simulation and field study were accomplished. As results, the simulation tool developed in this study can be used to predict the performance of ventilation system with accuracy.