• Title/Summary/Keyword: Ventilation rate

Search Result 814, Processing Time 0.031 seconds

A Study on the Calculation of Ventilation Rate in Apartment House according to VOCs and HCHO Substances of Building Material and Furniture (건축 마감재와 가구재의 VOCs, HCHO 유해물질에 따른 공동주택 적정 환기량 산정에 관한 연구)

  • Choi Jeong-Min;Park Jin-Seok;Son Young-Hwan;Park Chang-Sub;Park Min-Yong;Lee Kyung-Hee
    • Journal of the Korean housing association
    • /
    • v.16 no.4
    • /
    • pp.101-108
    • /
    • 2005
  • Because of the airtightness of building, misuse of building materials and abuse of furniture, indoor air pollution problems have been increasingly concerned especially with apartment buildings. To improve the IAQ(Indoor Air Quality) in apartment building, this study was aimed at analyzing the factor of interior building material and furniture and calculating the ventilation rate of living room and bed room according to the surface area of interior building material and furniture in terms of VOCs(Volatile Organic Compounds) and HCHO(Formaldehyde). The results of this study are as follows; 1) In the concerned rooms, the living room has less pollution emission rate L(surface area/volume) than that of the bed room but, the living room needs more ventilation rate than that of the bed room because of built-in furniture in terms of VOCs and HCHO. 2) Built-in interior furniture is very important factor in IAQ problems of apartment building, but until now there is no provision about the built-in furniture, so that the provision must be regulated to control the IAQ. 3) To control the IAQ problem, the effective ventilation plans must be established according to the required ventilation rate by means of natural or mechanical ventilation method.

Energy Saving Potentials of Ventilation Controls Based on Real-time Vehicle Detection in Underground Parking Facilities

  • Cho, Hong-Jae;Park, Joon-Young;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.331-340
    • /
    • 2013
  • The main topic of this paper is to show a possibility of indoor air quality enhancement and the fan energy savings in underground parking facilities by applying the demand-controlled ventilation (DCV) strategy based on the real-time variation of the traffic load. The established ventilation rate is estimated by considering the passing distance, CO emission rate, idling time of a vehicle, and the floor area of the parking facility. However, they are hard to be integrated into the real-time DCV control. As a solution to this problem, the minimum ventilation rate per a single vehicle is derived in this research based on the actual ventilation data acquired from several existing underground parking facilities. And then its applicability to the DCV based on the real-time variation of the traffic load is verified by simulating the real-time carbon monoxide concentration variation. The energy saving potentials of the proposed DCV strategy is also checked by comparing it with those for the current underground parking facility ventilation systems found in the open literature.

Effect of Acetate Tow Denier and Porous Plug Wrapping Paper on the Ventilation of Filter Cigarettes (아세테이트 토우 데니아와 필터권지 기공도가 담배 연기희석에 미치는 영향)

  • 이근회;김성한;심철호;양광규
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.77-82
    • /
    • 1983
  • The ventilation of cigarette samples made by the combination of various acetate tow denier and porous plug wrapping paper have been investigated The ventilation rate increased no longer in the acetate tow with high mono denier and low total denier but changed slightly in that with low mono denier and high total denier when the porosity of plug wrapping paper was more than 6500cm/min. cbar. Tip pressure drop ratio, Y, was significantly influenced by tip ventilation rate, X. i. e., Y = 1.0880-0.0042x The relationships of ventilation rate, $X_v$. and smoke delivery, Y, were as follows; Tar : $Y_r$= -14.0458-0.1650$X_v$ Nicotine : $Y_N$= - 1.1045-0.0125$X_v$ CO : $Y_{co}$=17.2806-0.2090$X_v$

  • PDF

Analysis of Adult Cardiopulmonary Resuscitation Skill Performed by Emergency Medical Technicians in Fire Department (소방 2급응급구조사의 성인 심폐소생술에 대한 숙련도 분석)

  • 최용철;이창섭;왕순주
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • Purpose: The purpose of this study is to predict a reasonable direction to design a pertinent educational program in the future by evaluating an adult CPR(Cardiopulmonary Resuscitation) skill performed by EMTs engaged in fire services organization and comparing the CPR success rate of factors as like a duty place and licensed year. Methods: We studied CPR skill by the use of a CPR manikin(Skillmeter Resusci Annie, Laerdal company). The study population consisted of 320 EMTs. Every EMT performed four cycle after investigating the manikin for 2 minutes. We regarded chest compression with 100 times in a minute as the 100% success rate. We analysed the skill of chest compression, ventilation and chest compression times success rate by the records printed in the CPR paper. Results: The average success rate of chest compression was 59.42$\pm$29.26% and ventilation 49.22$\pm$29.65%. The success rate of manual CPR was different between chest compression and ventilation. Also the success rate of chest compression times was high relatively as a 87.32$\pm$9.14%(p=0.000). For the CPR skill, ventilation was lowest as 49.22%. The factors such as duty place and licensed year did not influence the CPR success rate (p>0.001). Conclusion: We could have conclusion that CPR training should be shared more time in ventilation than in chest compression. Also we could reach to a conclusion that it is important to increase the times of CPR training for improving the accuracy of CPR and that the continuing education of CPR training frequency might be more than four times in a year.

Estimation of Ventilation Rates in Korean Homes Using Time-activity Patterns and Carbon Dioxide (CO2) Concentration (시간활동양상 및 이산화탄소 농도를 이용한 한국 주택 환기량 추정)

  • Park, Jinhyeon;Ryu, Hyeonsu;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives: The purpose of this study was to estimate the ventilation rate of residential homes in Korea through tracer gas methods using indoor and outdoor concentrations of carbon dioxide ($CO_2$) and $CO_2$ generation rates from breathing. Methods: In this study, we calculated the number of occupants in a home by time through data on the average number of people per household from the Korean National Statistical Office and also measured the amount of $CO_2$ generation by breathing to estimate the indoor $CO_2$ generation rate. To estimate the ventilation rate, several factors such as the $CO_2$ generation rate and average volume of residential house provided by the Korean National Statistical Office, indoor $CO_2$ concentrations measured by sensors, and outdoor $CO_2$ concentrations provided by the Korea Meteorological Administration, were applied to a mass balance model for residential indoor environments. Results: The average number of people were 2.53 per household and Koreans spend 61.0% of their day at home. The $CO_2$ generation rate from breathing was $13.9{\pm}5.3L/h$ during sleep and $15.1{\pm}5.7L/h$ in a sedentary state. Indoor and outdoor $CO_2$ concentrations were 849 ppm and 407 ppm, respectively. The ventilation rate in Korean residential houses calculated by the mass balance model were $42.1m^3/h$ and 0.71 air change per hour. Conclusions: The estimated ventilation rate tended to increase with an increase in the number of occupants. Since sensor devices were used to collect data, sustainable data could be collected to estimate the ventilation rate of Korean residential homes, which enables further studies such as on changes in the ventilation rate by season resulting from the activities of occupants. The results of this study could be used as a basis for exposure and risk assessment modeling.

Analysis of Natural Ventilation Rates of Venlo-type Greenhouse Built on Reclaimed Lands using CFD (전산유체역학을 통한 간척지 내 벤로형 온실의 자연환기량 분석)

  • Lee, Sang-Yeon;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Yeo, Uk-Hyeon;Park, Se-Jun;Kim, Rack-Woo;Jo, Ye-Seul;Lee, Seung-No
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.21-33
    • /
    • 2015
  • Recently, the Korean government announced a new development plan for a large-scale greenhouse complex in reclaimed lands. Wind environments of reclaimed land are entirely different from those of inland. Many standard books for ventilation design didn't include qualitative standard for natural ventilation. In this study, natural ventilation rates were analyzed to suggest standard for ventilation design of venlo type greenhouse built on reclaimed land. CFD (Computational Fluid Dynamics) simulation models were designed according to the number of spans, wind conditions and vent openings. The wind profile at a reclaimed land was designed using ESDU (Engineering Sciences Data Unit) code. Using the designed CFD simulation model, ventilation rates were computed using mass flow rate and tracer gas decay method. Additionally computed natural ventilation rates were evaluated by comparing with ventilation requirements. As a result of this study, ventilation rates were decreased with increasing of the number of spans. Ventilation rates were linearly increased with increasing of wind speed. When the wind speed was $1.0\;m{\cdot}s^{-1}$, only side vent was open and wind direction was $45^{\circ}$, homogeneity of ventilation rate at 0~1 m height is the worst. Finally, chart for computing natural ventilation rate was suggested. The chart was expected to be used for establishing standard of ventilation design.

An Experimental Study of Smoke Movement in Tunnel Fire with Natural and Forced Ventilations (자연 및 강제 배기시의 터널 내 연기거동에 관한 실험적 연구)

  • Hwang Cheol-Hong;Yoo Byung-Hun;Kum Sung-Min;Kim Jung-Yup;Shin Hyun-Joon;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.711-721
    • /
    • 2005
  • In order to design of emergency ventilation systems, the smoke movements in tunnel fire with natural and forced ventilation were investigated. Reduced-scale experiments were carried out under the Froude scaling with novel fire source consisting many wicks. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gases were measured at emergency exit point in the natural ventilation case. In forced ventilation, temperature profiles were measured with various flow rate to obtain critical velocity. The results showed that the interval of emergency exit having 225m was estimated reasonably through the measurements of temperature variation and poisonous gas in the natural ventilation. In the case of forced ventilation, the temperature distribution near fire source is remarkably different from that of natural ventilation. Also, the critical velocity to prevent upstream smoke flow has the range of 0.57m/s between 0.64m/s. Finally, it was also identified that although the increase of flow rate can suppress the backward flow of smoke to upstream direction, brings about the increase of flame intensity near stoichiometric fuel/air ratio.

Air Flow Prediction and Experiment by T-Method According to Duct Layout on House Ventilation System (주택환기시스템의 덕트 Layout에 따른 T-Method의 풍량 예측 및 실험)

  • Joo, Sung-Yong;Yee, Jurng-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.523-528
    • /
    • 2008
  • The accurate distribution of flow rate has been a very important part to control the air change rate since introduction of house ventilation system. An inappropriate selection of fan due to incorrect prediction of pressure loss in duct brings energy loss. In the previous study the pressure loss of general spiral duct was measured and database was constructed for finding correct loss factors in fitting upper stream. The purpose of this study is to compare and investigate the error range of flow rate by applying T-Method to bilateral symmetry and asymmetry layout of duct. The results of this study are as following. It is demanded to decide accurate size under duct design for house ventilation system. Because the small amount of Flow rate was considered at that time. The error range was 3.17% on case1 and 3.52% on case2. The error range difference was 0.35%.

  • PDF

Minimum Ventilation Rate of Kindergarten in the respect of IAQ (실내공기질을 고려한 유치원 보육실의 적정 환기량 검토)

  • Cheong, Chang-Heon;Lee, Yun-Gyu;Kim, Tae-Youn;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.283-288
    • /
    • 2006
  • Indoor Air Quality Guideline of Kindergarten in korea didn't consider the vulnerable properties of children to indoor air pollutants. For this reason, Suggestion for the IAQ guideline of formaldehyde and minimum ventilation rate was made in this study. Suggested IAQ guidelines for formaldehyde in the respect of children's vulnerable immune system is $30{\mu}g/m^3$ and $50{\mu}g/m^3$, and for the ventilation rate 11.9 ACH, 5.8 ACH, respectively. This value is based only formaldehyde and CO2 concentrations in child-care room of Kindergarten and needed to be verified by further investigations and studies. However it is discovered that lower formaldehyde concentration can do mal-effects to children's health by literature review.

  • PDF

Effect of Slit Ventilation System in Sportswear on Physiological Responses (스포츠웨어의 슬릿 벤틸레이션 시스템이 인체 생리반응에 미치는 효과)

  • Yeon, Soo-Min;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • The purpose of this study was to investigate the effects of silt ventilation system on physiological responses. We measured rectal temperature, local skin temperature, clothing microclimate, blood pressure, heart rate, energy metabolism, body weight loss and subjective sensation during 70 minute, 50 min exercise period and 20 min rest period. The five women subjects randomly wore sportswear without slit ventilation system(NS sportswear) and sportswear with slit ventilation system(S sportswear) under the environmental condition of $25^{\circ}C$, 50%RH. The results of this study are as follows; Rectal temperature, mean skin temperature, clothing microclimate, blood pressure, heart rate, energy metabolism and body weight loss were significantly lower level in 'S sportswear'. In 'S sportswear', subjects replied less hot, less uncomfortable and less wet. Slit ventilation system can be used for bellow effect which is meaningful device of convection during exercise. We could find out that 'S sportswear' has advantage in physiological function.