• Title/Summary/Keyword: Ventilation System

Search Result 1,345, Processing Time 0.03 seconds

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

Smart Closet based on Arduino MEGA (아두이노 메가 기반의 스마트 옷장)

  • Mun, Se-Hun;Lee, Ju-Hyon;Lee, Ji-Min;Park, Gun-Hee;Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.949-958
    • /
    • 2022
  • Modern people have many kinds of clothes for individuals, and not just for storing clothes, but also for managing the condition of the closet, and users of smart closets created smart closets that provide daily convenience and optimal closet conditions, suggesting the possibility of developing smart furniture for various environments. In this developed system, smart closet is controlled using app inventor and touch LCD through bluetooth wireless communication, based on Arduino MEGA and user's clothes is recommended depending on the weather. In addition, this smart closet is designed with real-time weather status checking and easy ventilation function. It was implemented through the Arduino and app inventor program so that the weather can be printed on the LCD screen and the user's suitable clothes can be recommended to the application.

Effect of the respiratory rate on the pulse pressure variation induced by hemorrhage in anesthetized dogs

  • Dalhae, Kim;Won-Gyun, Son;Donghwi, Shin;Jiyoung, Kim;Inhyung, Lee
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.68.1-68.8
    • /
    • 2022
  • Background: Studies on anesthetized dogs regarding pulse pressure variation (PPV) are increasing. The influence of respiratory rate (RR) on PPV, in mechanically ventilated dogs, has not been clearly identified. Objectives: This study evaluated the influence of RR on PPV in mechanically ventilated healthy dogs after hemorrhage. Methods: Five healthy adult Beagle dogs were premedicated with intravenous (IV) acepromazine (0.01 mg/kg). Anesthesia was induced with alfaxalone (3 mg/kg IV) and maintained with isoflurane in 100% oxygen. The right dorsal pedal artery was cannulated with a 22-gauge catheter for blood removal, and the left dorsal pedal artery was cannulated and connected to a transducer system for arterial blood pressure monitoring. The PPV was automatically calculated using a multi-parameter monitor and recorded. Hemorrhage was induced by withdrawing 30% of blood (24 mL/kg) over 30 min. Mechanical ventilation was provided with a tidal volume of 10 mL/kg and a 1:2 inspiration-to-expiration ratio at an initial RR of 15 breaths/min (baseline). Thereafter, RR was changed to 20, 30, and 40 breaths/min according to the casting lots, and the PPV was recorded at each RR. After data collection, the blood was transfused at a rate of 10 mL/kg/h, and the PPV was recorded at the baseline ventilator setting. Results: The data of PPV were analyzed using the Friedman test followed by the Wilcoxon signed-rank test (p < 0.05). Hemorrhage significantly increased PPV from 11% to 25% at 15 breaths/min. An increase in RR significantly decreased PPV from 25 (baseline) to 17%, 10%, and 10% at 20, 30, and 40 breaths/min, respectively (all p < 0.05). Conclusions: The PPV is a dynamic parameter that can predict a dog's hemorrhagic condition, but PPV can be decreased in dogs under high RR. Therefore, careful interpretation may be required when using the PPV parameter particularly in the dogs with hyperventilation.

A Study on Damage Assessment for Fuel Cell Facilities in Gas Stations (주유소 내 연료전지설비에 대한 사고피해예측 연구)

  • Sung Yoon Lim;Jang Choon Lee;Jae Hoon Lee;Seung Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.71-80
    • /
    • 2023
  • Fuel cells are low-carbon power sources that can expand distributed energy system and electric vehicle charging infrastructure when installing fuel cells in gas stations. In order to ensure safety for fuel cells in gas stations, quantitative risk assessments were conducted after deriving accident scenarios based on accident data of domestic and foreign gas stations and fuel cells. It calculates the expected extent of damage from fire and explosion that can occur in reality, not the worst accident scenario, and analyzes the damage impact. The separation distance of more than 9.0 m from a dispenser, 15.5 m from a car under refueling, 4.1 m from the ventilation pipe, 1.1 m from the gas adjustment device prevent the severe damage caused by the expected accident. This study result can be used to deploy fuel cells in gas stations and establish safety measures.

Assessment of Volatile Organic Compound Reduction Using an Air Purification Facility in an Adhesive Handling Process (접착제 취급 작업장 내 공기정화 설비를 이용한 휘발성 유기화합물 저감 평가)

  • Jaemin Woo;Dongjun Kim;Jihun Shin;Gihong Min;Chaekwan Lee;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.78-88
    • /
    • 2023
  • Background: Exposure to volatile organic compounds (VOCs) can have acute and chronic health effects on human beings in general and in working environments. In particular, VOCs are often emitted in large quantities in industrial settings. In such circumstances, there is a need to improve the indoor air quality at workplaces. Objectives: The purposes of this study were to verify the effectiveness of air cleaning devices in workplaces and provide alternative solutions for improving working environments. Methods: Personal exposure and area level of VOCs for workers were evaluated in a car-part adhesive process before and after installing an air cleaning device with a TiO2-coated filter. Passive samplers and direct reading instruments were used to collect and analyze the VOCs, and the removal efficiency and improvement of air quality were evaluated. We also calculated the exposure index (EI) to assess the risk level in the workplace. Results: The removal efficiency for VOCs through the installation of the air cleaning device was approximately 26.9~69.0% as determined by the concentration levels before and after installation. The measured substances did not exceed the exposure limits for the work environment and the EI was less than 1. However, carcinogenic substances such as benzene, formaldehyde, carbon tetrachloride, and trichloroethylene were detected. Conclusions: The application of an air cleaning device can be a solution for controlling the indoor air quality in a workplace, particularly in cases where ventilation systems cannot be installed due to process limitations.

A Study on Optimal Ventilation Design for Gas Boxes Installed in Semiconductor Manufacturing Equipment Handling Flammable Liquids (인화성 가스를 취급하는 반도체 제조장비에 설치된 가스박스 최적 환기 설계에 대한 연구)

  • Gyu Sun Cho;Sang Ryung Kim;Won Baek Yang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • Although Korea is the world's No. 1 semiconductor producing country, most studies are conducted with risk assessment for simple material risks due to the closedness of the site for industrial protection. In terms of industrial safety, a monitoring system such as a gas detector to determine the leakage of hazardous substances has been established, but research on effectively discharging harmful gastritis substances in case of leakage has only recently begun. Semiconductor manufacturing facilities (gas boxes) where a large amount of flammable materials are handled are currently being safety managed by using a gas detector and blocking the air inlet. It is difficult to dilute in a short time in case of leakage of flammable substances. Therefore, in this study, based on various criteria, the size of the duct according to the size of the gas box is determined and the appropriate size of the air inlet is studied to minimize the exhaust performance requirement without exposing hazardous chemicals to the outside in the event of a flammable leak. We want to do an optimal exhaust design.

A Study on the Functional Design Elements for Children's Ski Pants (아동용 스키 팬츠의 기능적 설계요소 연구)

  • Kyungok Kim;Jongsuk Chun
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • This study identified design elements of the functions required for children's ski pants. Data for this study were collected through questionnaire surveys conducted among children's ski instructors and children's sportswear developers. Five functionalities of children's skiwear were evaluated: mobility, stability, comfort, protection, and convenience. A total of 25 functional design elements related to the patterns, design details, and physical characteristics of fabrics for ski garments, were evaluated. The results of this study are as follows. First, children's sportswear developers evaluated that the pattern elements were important. Most of the pattern design elements highly related to mobility. Children's ski instructors' appraisal was that the height of the back waist was the important feature. Second, regarding the design details, children's ski instructors evaluated the size adjustment function and ventilation system as important elements. Many design detail elements were highly related in respect of stability, comfort, protection, and convenience. Third, the physical characteristics of fabric were strongly associated with mobility, comfort, and protection. As regards the physical characteristics of fabric, children's ski instructors valued anti-fouling highly, but children's sportswear developers attached more importance to the weight of the fabric. The results of this study will be useful in designing functional ski pants for children of elementary and intermediate ski levels. Since there may be limitations related to the ski level and age of children wearing ski pants, it is suggested that follow-up studies according to various groups of the ski pant wearers should be done.

Evaluation of Energy Loads for Broiler-Standard Design Models Using a Building Energy Simulation Method (건물에너지시뮬레이션 기법을 이용한 육계사 표준설계모델의 에너지 부하 산출)

  • Kwon, Kyeong-seok;Yang, Ka-young;Kim, Jong-bok;Jang, Dong-hwa;Ha, Taehwan;Jeon, So-ra
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • This study was to quantitatively evaluate periodic and maximum energy loads for broiler-standard design models by the Ministry of Agriculture, Food and Rural Affairs (2016). Building energy simulation method was used to compute heating and cooling loads of the designed broiler houses according to regional locations and insulation characteristics of wall and roof. It considered sensible and latent heat generation from broilers, dynamic operation of ventilation system according to environment variations. It was found that variation of periodic heating loads was relatively higher than that of periodic cooling loads according to thickness changes of wall and roof. Assuming that broiler was raised at every even-month, periodic heating and cooling loads were 6 and 18% lower, respectively than odd-month raising condition. When recommendation rules of insulation characteristics (wall and roof thickness) by the Ministry of Land, Infrastructure and Transport was adopted, periodic heating load of Jeju-si was 20.3% higher than national average values. Based on the BES computed periodic and maximum energy loads under the designed experimental condition, these results can contribute to reestablishing standard design of broiler houses, especially for insulation characteristics, and designing management strategies for efficient energy uses.

Analysis of the Changesin PM2.5 Concentrations using WRF-CMAQ Modeling System: Focusing on the Fall in 2016 and 2017 (WRF-CMAQ 모델링 시스템을 활용한 PM2.5 농도변동 원인 분석: 2016년과 2017년의 가을철을 중심으로)

  • Nam, Ki-Pyo;Lim, Yong-Jae;Park, Ji-Hoon;Kim, Deok-Rae;Lee, Jae-Bum;Kim, Sang-Min;Jung, Dong-Hee;Choi, Ki-Chul;Park, Hyun-Ju;Lee, Han-Sol;Jang, Lim-Seok;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.215-231
    • /
    • 2018
  • It was analyzed to identify the cause of $PM_{2.5}$ concentration changes for the fall in 2016 and 2017 in South Korea using ground measurement data such as meterological variables and $PM_{2.5}$, AOD from GOCI satellite, and WRF-CMAQ modeling system. The result of ground measurement data showed that the $PM_{2.5}$ concentrations for the fall in 2017 decreased by 12.3% ($3.0{\mu}g/m^3$) compared to that of 2016. The difference of $PM_{2.5}$ concentrations between 2016 and 2017 mainly occurred for 11 Oct. - 20 Oct. (CASE1) and 15 Nov. - 19 Nov. (CASE2) when weather conditions were difficult to long-range transport from foreign regions and favored atmospheric ventilation in 2017 compared to 2016. Simulated $PM_{2.5}$ concentrations in 2017 decreased by 64.0% ($23.1{\mu}g/m^3$) and 35.7% ($12.2{\mu}g/m^3$) during CASE1 and CASE2, respectively. These results corresponded to the changes in observed $PM_{2.5}$ concentrations such as 53.6% for CASE1 and 47.8% for CASE2. It is implied that the changes in weather conditions affected significantly the $PM_{2.5}$ concentrations for the fall between 2016 and 2017. The contributions to decreases in $PM_{2.5}$ concentrations was assessed as 52.8% by long-range transport from foreign regions and 47.2% by atmospheric ventilation effects in domestic regions during CASE1, whereas their decreases during CASE2 were affected by 66.4% from foreign regions and 33.6% in domestic regions.

A study on the effect of air velocity through a damper on smoke extraction performance in case of fire in road tunnels (도로터널 화재 시 집중배기방식의 배기포트 통과풍속이 배연성능에 미치는 영향에 관한 연구)

  • Ryu, Ji-Oh;Na, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.347-365
    • /
    • 2020
  • In order to resolve traffic problems in urban areas and to increase the area of green spaces, tunnels in downtown areas are being increased. Additionally, the application of large port smoke extraction ventilation systems is increasing as a countermeasure to smoke extraction ventilation for tunnels with high potential for traffic congestion. It is known that the smoke extraction performance of the large port smoke extraction system is influenced not only by the amount of the extraction flow rate, but also by various factors such as the shape of the extraction port (damper) and the extraction air velocity through a damper. Therefore, in this study, the design standards and installation status of each country were investigated. When the extraction air flow rate was the same, the smoke extraction performance according to the size of the damper was numerically simulated in terms of smoke propagation distance, compared and evaluated, and the following results were obtained. As the cross-sectional area of the smoke damper increases, the extraction flow rate is concentrated in the damper close to the extraction fan, and the smoke extraction rate of the damper in downstream decreases, thereby increasing the smoke propagation distance on the downstream side. In order to prevent such a phenomenon, it is necessary to reduce the cross-sectional area of the smoke damper and increase the velocity of passing air through the damper so that the pressure loss passing through the damper increases, thereby reducing the non-uniformity of smoke extraction flow rate in the extraction section. In this analysis, it was found that when the interval distance of the extraction damper was 50 m, the air velocity passing through damper was 4.4 m/s or more, and when the interval distance of the extraction dampers was 100 m, the air velocity passing through damper was greater than 4.84 m/s, it was found to be advantageous to ensure smoke extraction performance.