• Title/Summary/Keyword: Ventilation Efficiency

Search Result 402, Processing Time 0.027 seconds

Wet Chemical Process for Improving Air Quality in Semiconductor Manufacturing Process (반도체 생산공정의 대기질 개선을 위한 복합 대기오염물의 습식화학 제거공정)

  • Jun, Chang-Sung;Kim, Hak-Ju;Park, Young-Moo;Lee, Dae-Won;Ham, Dong-Suk;Jeon, Sang-Moon;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • In this study, we performed basic researches to develop wet purification system for improving air qualities of ventilation in semiconductor manufacturing process. Using 0.5 M aqueous solution of $KMnO_4$, 50 ppm of $NH_3$, SOx and NOx were reduced to 99% successfully. However, the removal of $O_3$ was limited to $22{\sim}30%$ for all the tested chemical solutionsincluding $KMnO_4$. Therefore, adoption of a dry ozone filter is necessary to reduce $O_3$ below a satisfactory level. For all the chemical solutions tested, NOx removal efficiency increased as NOx was mixed with $O_3$. As chemical solution was sprayed using water spraying system equipped with air atomizing type nozzle, the removal efficiencies of gaseous pollutants increased due to the increase of gas-liquid interfacial area.

  • PDF

Stabilization of Soil Moisture and Improvement of Indoor Air Quality by a Plant-Biofilter Integration System (식물-바이오필터에 의한 토양수분 안정화 및 실내 공기질 향상)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.751-762
    • /
    • 2015
  • This study was performed to investigate the stability of soil moisture in controlling air ventilation rate within a horizontal biofilter, and to compare removal efficiency (RE) of indoor air pollutants including fine dust, volatile organic compounds (VOCs), and formaldehyde (HCHO), depending on whether dieffenbachias (Diffenbachia amoena) were planted in the biofilter. The relative humidity, air temperature, and soil moisture contents showed stable values, regardless of the presence of D. amoena, and the plants grew normally in the biofilter. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter filled with only soil were at least 30% and 2%, respectively. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter including the plants were above 40% and 4%, respectively. RE for fine dust (PM10) weight was above 4% and 20%, respectively, in the biofilter containing only soil or soil together with plants. In the case of the biofilter filled with only soil, REs for xylene, ethylbenzene, toluene or total VOC (T-VOC) were each more than 63%; however, REs for benzene and formaldehyde (HCHO) were above 22% and 38%, respectively. In the biofilter with the plants, REs for xylene, ethylbenzene, toluene, and T-VOC were each above 72%, and REs for benzene and HCHO were above 39%. Thus, RE of the biofilter integrated with plants was found to be higher for volatile organic compounds than for fine dust. Hence, the biofilter was very effective for indoor air quality improvement and the effect was higher when integrated with plants.

Effect of Modified Cyclone Dust Collector in Windowless Broiler Building (변형된 사이클론 먼지포집기의 이용이 무창계사의 먼지농도에 미치는 영향)

  • Choi, H.C.;Yeong, G.Y.;Song, J.I.;Kang, H.S.;Kwon, D.J.;Yoo, Y.H.;Yang, C.B.;Chun, S.S.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • This study was carried out to develop the modified cyclone dust collector in windowless broiler building measuring 12 m wide, 46 m long, with a side wall height of 3 m and a capacity of 12,800 birds. Ventilation rate in windowless broiler building was $0.014{\sim}0.015\;and\;0.158{\sim}0.181cmm$ in second weeks and fifth weeks of age, respectively. Ammonia concentration was $13{\sim}16\;and\;20{\sim}24\;ppm$ in first and second weeks of age, respectively. Amount of dust collected in dust collector each week was 104.1, 274.7 and 388.6g in first, second and third weeks of age. But it was decreased from fourth weeks of age because of the increased ventilation rate. Total suspended particulate(TSP) of polluted air was $3,111.7{\sim}8,745.2{\mu}g/m^3$, but it was decreased to $530.8{\sim}2,264.4{\mu}g/m^3$ when it passed through the dust collector. Collecting efficiency was $54.2{\sim}82.9%$ in TSP. But collecting efficiency of Particulate matter smaller than $1{\mu}g$ (PM1.0) was $7.6{\sim}33.8%$, and lower than TSP. TSP concentration in control broiler house was 1,387.6 and $4,210.1{\mu}g/m^3$ in first and fourth weeks of age, respectively. But it was decreased to 876.3 and $2,535.3{\mu}g/m^3$ in broiler house operated dust collector in first and fourth weeks of age, respectively. Dust collecting efficiency for TSP was $36.8{\sim}39.8%$, and it was decreased to $11.4{\sim}39.8%$ in smaller dust size.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

A Study on the Calculation Method of Load standard for ZEB activation (ZEB 활성화를 위한 부하기준 산정 방법 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.92-99
    • /
    • 2017
  • In Korea, the zero energy building was designated as the 7 new industries in the Ministry of Land and the 8 new industries in the Ministry of Industry. In order to maximize the insulation performance of the building envelope, improve the efficiency of building equipment, We are aiming. It is necessary to analyze the energy requirements of the buildings (cooling, heating, hot water supply, lighting, ventilation) of buildings with energy efficiency level of 1++ which is equivalent to the zero energy building certification system in Korea, It is aimed to be used as basic data for the advancement of energy building certification system. Zero Energy Building certification is estimated to be 61 buildings by 2017, and the approximate reference value and the first energy requirement for each of the five loads are calculated considering passive and active aspects. It is difficult to say that it is a clear standard because there is a small sample of data for calculating the load standard. However, it is necessary to interpret various methods in order to upgrade the Zero Energy Building certification standard in the future.

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System (이류체 포그 냉방시스템의 제어알고리즘 개발)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 2013
  • In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.

Study on Ventilation Efficiency of a Mechanically Ventilated Broiler House­(I)Summer Season (강제환기식 육계사내의 환기효율성 조사연구­(I)하절기)

  • 이인복;정문성;유병기;전종기;김경원;이승기
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • In this study, the distributions of internal climates such as air temperature, humidity, dust, ammonia gas, and air velocity were systematically measured at a mechanically ventilated broiler houses during summer season, with local weather data. The analysis was focused on the suitability, stability, and uniformity of internal climate, resulting in serious stress on chickens and decrease of productivity In the mechanically ventilated broiler house, the difference between measured and recommended air temperatures(suitability) was 10.4C in maximum during the summer time. The difference of air temperature in the house between day and night was $8.7^{\circ}C$ in maximum. And maximal hourly range of internal air temperature at 0.4m height from the floor was $3.7^{\circ}C$ suggesting it maintained thermal uniformity in the broiler house. The $NH_3$ and dust concentrations were pretty low because ventilation was fully performed. The air speed at chicken location was measured 2.2m/s and 1.7m/s, respectively without and with chicken existence.

  • PDF

Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the Top Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Opened - (공동주택의 하절기 자연환기 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석)

  • Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature, globe temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample units on the condition that all the openings of the units are opened. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained three brief results as follows. Indoor air temperature difference between the two sample units shifts a day. Indoor air temperature at the top floor unit is $0{\sim}1.8^{\circ}C$ higher than that of the middle floor unit from 12:00 p.m. to 12:00 a.m. and $0{\sim}2.8^{\circ}C$ lower from 12:00 a.m. to 12:00 p.m. The evaluation of the indoor thermal comfort index and the globe temperature shows similar results as the indoor air temperature measuring. Results of this experiment verified the actual existence of indoor air temperature difference between the top floor unit and the middle one and this difference comes from the heat storage of the roof.