• 제목/요약/키워드: Velocity reconstruction

검색결과 91건 처리시간 0.021초

디지털 holographic PTV 측정을 위한 디지털 영상처리기법에 관한 연구 (Digital image processing techniques of digital holographic PTV measurement)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.1-5
    • /
    • 2005
  • The digital HPTV velocity field measurement consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved PTV algorithm to extract the displacement of particle each placed in 3D space. Because a digital recording device was used, some factors such as a spatial resolution, numerical aperture, and particle concentration can affect the performance of the digital HPTV. Especially, a particle concentration ($C_{o}$) affected tile reconstruction efficiency in numerical reconstruction and particle extraction process. In this paper, the reconstruction efficiency was analyzed experimentally with different particle concentration. Optimal reconstruction efficiency was shown in the range of $C_{o}$=$13\∼15$ particles/$mm^{3}$.

  • PDF

입자 농도가 Digital Holographic PTV 측정에 미치는 영향에 관한 연구 (Effect of Particle Concentration on Digital Holographic PTV Measurement)

  • 김석;이상준
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.929-934
    • /
    • 2006
  • The digital HPTV(holographic particle tracking velocimetry) velocity field measurement system consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved the two frame PTV algorithm to extract 3-D displacement information of each particle located in 3D space. Because a digital CCD camera was used, some factors such as spatial resolution, numerical aperture, and particle concentration influenced on the performance of the developed digital HPTV. Especially, the particle concentration $(C_o)$ affected the reconstruction efficiency and recovery ratio in the numerical reconstruction and particle extraction procedure. In this paper, the effect of particle concentration reconstruction efficiency and recovery ratio were analyzed experimentally. Optimal particle concentration was found to be in the range of $C_o=11{\sim}17\;particles/mm^3$.

음장 재구성에 의한 관내 평균유속 측정 (Mean Flow Velocity Measurement Using the Sound Field Reconstruction)

  • 김건순;정완섭;권휴상;박경암;백종승;유성연
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.924-929
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity over the cross sectional area of the pipe using sound field reconstruction. When fluid flows in the pipe and two plane waves propagate oppositely through the medium, the flow velocity causes the change of wave number of the plane waves. The wave number of the positive going plane wave decreases and that of negative going one increases in comparison to static medium in the pipe. Theoretical backgrounds of this method are introduced in detail and the measurement of mean flow velocity using the sound field reconstruction is not affected by velocity profile upstream of microphones.

Reconstruction of wind speed fields in mountainous areas using a full convolutional neural network

  • Ruifang Shen;Bo Li;Ke Li;Bowen Yan;Yuanzhao Zhang
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.231-244
    • /
    • 2024
  • As wind farms expand into low wind speed areas, an increasing number are being established in mountainous regions. To fully utilize wind energy resources, it is essential to understand the details of mountain flow fields. Reconstructing the wind speed field in complex terrain is crucial for planning, designing, operation of wind farms, which impacts the wind farm's profits throughout its life cycle. Currently, wind speed reconstruction is primarily achieved through physical and machine learning methods. However, physical methods often require significant computational costs. Therefore, we propose a Full Convolutional Neural Network (FCNN)-based reconstruction method for mountain wind velocity fields to evaluate wind resources more accurately and efficiently. This method establishes the mapping relation between terrain, wind angle, height, and corresponding velocity fields of three velocity components within a specific terrain range. Guided by this mapping relation, wind velocity fields of three components at different terrains, wind angles, and heights can be generated. The effectiveness of this method was demonstrated by reconstructing the wind speed field of complex terrain in Beijing.

모형자동차 충돌시험의 데이터베이스를 이용한 측면 충돌사고 재구성 (A Study on the Side Collision Accident Reconstruction Using Database of Crush Test of Model Cars)

  • 손정현;박석천;김광석
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.49-56
    • /
    • 2009
  • In this study, a side collision accident reconstruction using database based on the deformed shape information from the collision test using model cars is suggested. A deformation index and angle index related to the deformed shape is developed to set the database for the collision accident reconstruction algorithm. Two small size RC cars are developed to carry out the side collision test. Several side collision tests according to the velocity and collision angles are performed for establishing the side collision database. A high speed camera with 1000fps is used to capture the motion of the car. A side collision accident reconstruction algorithm is developed and applied to find the collision conditions before the accident occurs. Two collision cases are tested to validate the database and the algorithm. The results obtained by the reconstruction algorithm show good match with original conditions with regard to the velocity and angle.

충돌 후 속도와 충돌 변형으로부터 자동차 충돌 재구성 (Automobile Collision Reconstruction Using Post-Impact Velocities and Crush Profile)

  • 한인환
    • 대한교통학회지
    • /
    • 제18권4호
    • /
    • pp.107-115
    • /
    • 2000
  • 본 논문에서는 자동차 충돌사고 재구성에 직접 적용이 가능하도록, 주어지는 두 차량의 충돌후 속도, 차량에 관한 간단한 물성치와 기하학적 상대 위치들에 근거하여 충돌 직전 속도 성분들을 계산하는 소위 충돌 거동에 대한 역해석 방법을 제시한다. 또한, 제시하는 역해석 방법이 실용적 의미를 가지게 하기 위해서, 충돌 후 조건들로부터 반발계수와 역적비에 대한 적절한 추정 방법과 더불어 충돌 변형으로부터 유추할 수 있는 충돌 과정동안의 에너지 손실에 근거한 역해석 방안도 포함한다. 실차충돌 실험자료의 분석 결과에 따르면, 역적-운동량이론에만 근거한 역해석 결과뿐만 아니라 에너지 손실에 근거한 역해석 결과도 실험 결과와 좋은 일치를 보여주고 있다 강체역학의 범주내에서 역해석을 수행할 수 없는 공통속도 조건과 같은 경우나 반발계수에 관한 추정결과가 적절하지 않게 되는 등 단지 역적-운동량이론만을 이용한 해석 결과가 미흡한 경우에는 에너지 손실에 근거한 역해석 방법을 보완적으로 활용할 수 있을 것이다. 본 논문에서 제시한 충돌 과정 역해석 결과는 자동차충돌 해석 결과 및 충돌 전·후 거동에 대한 역미끄럼 해석 결과와 유기적으로 결합하여 자동차 충돌 사고 전 과정에 대한 직접적인 역해석을 수행할 수 있는 사고 재구성 패키지의 개발을 기대할 수 있다.

  • PDF

디지털 Holographic PTV기법을 이용한 미세튜브 내부 3차원 유동장 측정 (Measurement of 3D Flow inside Micro-tube Using Digital Holographic PTV Technique)

  • 김석;김주희;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.177-178
    • /
    • 2006
  • Digital holographic particle tracking velocimetry (HPTV) is developed by single high-speed camera and single continuous laser with long coherent length. This system can directly capture 4000 hologram fringe images for 1 second through a camera computer memory. The 3D particle location is made of the reconstruction by using a computer hologram algorithm. This system can successfully be applied to instantaneous 3D velocity measurement in the water flow inside a micro-tube. The average of 100 instantaneous velocity vectors is obtained by reconstruction and tracking with the time of evolution of recorded fringes images. In the near future, we will apply this technique to measure 3D flow information inside various micro structures.

  • PDF

SVR model reconstruction for the reliability of FBG sensor network based on the CFRP impact monitoring

  • Zhang, Xiaoli;Liang, Dakai;Zeng, Jie;Lu, Jiyun
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.145-158
    • /
    • 2014
  • The objective of this study is to improve the survivability and reliability of the FBG sensor network in the structural health monitoring (SHM) system. Therefore, a model reconstruction soft computing recognition algorithm based on support vector regression (SVR) is proposed to achieve the high reliability of the FBG sensor network, and the grid search algorithm is used to optimize the parameters of SVR model. Furthermore, in order to demonstrate the effectiveness of the proposed model reconstruction algorithm, a SHM system based on an eight-point fiber Bragg grating (FBG) sensor network is designed to monitor the foreign-object low velocity impact of a CFRP composite plate. Simultaneously, some sensors data are neglected to simulate different kinds of FBG sensor network failure modes, the predicting results are compared with non-reconstruction for the same failure mode. The comparative results indicate that the performance of the model reconstruction recognition algorithm based on SVR has more excellence than that of non-reconstruction, and the model reconstruction algorithm almost keeps the consistent predicting accuracy when no sensor, one sensor and two sensors are invalid in the FBG sensor network, thus the reliability is improved when there are FBG sensors are invalid in the structural health monitoring system.

HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석 (COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.

근접음장 음향 홀로그래피를 이용한 평판내의 속도분포 예측 (The reconstruction of Structure Velocity Field Using Nearfield Acoustic Holography)

  • 권오훈;이효근;박윤식
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.251-259
    • /
    • 1994
  • Nearfield acoustic holography is known as a powerful tool to study sound radiation from a structure. In this work, the so called backward propagation of sound pressure field is studied to obtain the structure velocity distribution. The results, which were obtained using FFT algorithms, are presented for a finite plate excited at the frequencies above and below coincidence. These results illustrate the effect of stand-off distance and noise. An optimum cutoff frequency in wavenumber domain was suggested to reduce the effects of evanescent wave in the backward propagation. The experimental results were also included for a plate to demonstrate the effectiveness of the suggested cutoff frequency. The optimum cutoff frequency to exclude the unwanted noise in the process of reconstruction of the velocity field gives the good results in both simulations and experiments.