• Title/Summary/Keyword: Velocity ratio

Search Result 2,671, Processing Time 0.026 seconds

Using Lamb Waves to Monitor Moisture Absorption in Thermally Fatigued Composite Laminates

  • Lee, Jaesun;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

Spontaneous Resolution of Childhood Nutcracker Syndrome (소아 Nutcracker 증후군의 자연 소실)

  • Kim, Jong-Min;Choi, Youn-Jung;Lee, Jae-Seung
    • Childhood Kidney Diseases
    • /
    • v.10 no.2
    • /
    • pp.213-218
    • /
    • 2006
  • Purpose : Nutcracker syndrome refers to compression of the left renal vein(LRV) between the aorta and superior mesenteric artery(SMA) that results in elevation of pressure in the LRV and development of collateral veins. It must be considered as a possible factor when hematuria or proteinuria occurs in a healthy child. The purpose of this study is to determine the time to spontaneous resolution in childhood nutcracker syndrome, and to observe whether this is affected by sex, age, proteinuria or initial ratio of peak velocity of LRV. Methods : We investigated 26 patients who were found to have spontaneous resolution by follow-up Doppler ultrasonography among 117 patients diagnosed with nutcracker syndrome by renal Doppler ultrasonography from May 2001 to December 2005. We determined the time to spontaneous resolution in childhood nutcracker syndrome, and observed whether the duration was affected by sex, age, proteinuria or initial ratio of peak velocity. Results : 26 patients(59%) achieved spontaneous resolution by 1.2 years(mean). The time to spontaneous resolution of childhood nutcracker syndrome in 26 patients was $16.71{\pm}9.99$ months(range 6.0-49.2). The time to spontaneous resolution was not affected by sex, age, proteinuria nor initial ratio of peak velocity of LRV. Conclusion : More than half of the patients who were diagnosed by renal Doppler ultrasonography achieved spontaneous resolution. The time to spontaneous resolution was not affected by sex, age, proteinuria nor initial ratio of peak velocity of LRV.

  • PDF

A numerical study on the performance of a heat pump assisted dryer (열펌프 건조기의 성능에 관한 수치해석)

  • Kim, I.G.;Park, S.R.;Koh, J.Y.;Kim, Y.J.;Kim, J.G.;Yim, C.S.
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.91-104
    • /
    • 1998
  • This study carried out a numerical analysis on a heat pump assisted dryer using HFC134a. Under the constant degree of superheat and that of subcooling, we analyzed the performance of heat pump assisted dryer with varying an air mass velocity, bypass air ratio, compressor speed and an inlet bulb temperature of dryer. Simulation results were compared with experimental results, so they were maximally agreed in the range of 10%. There was the proper bypass air ratio with varying an air mass velocity. As for the effect of SMER having the inlet temperature $35^{\circ}C$ and compressor speed 1360rpm, bypass air ratio was 30% at the front velocity 0.5kg/s, 40% at the front velocity 0.7kg/s and 50% at the front velocity 0.9kg/s and 1.1kg/s. As the compressor speed was increased, SMER decreased and COP increased. As the inlet bulb temperature was increased, SMER and COP decreased.

  • PDF

COMPARISON OF SOBOLEV APPROXIMATION WITH THE EXACT ALI IN P CYGNI TYPE PROFILE

  • CHOE SEUNG-URN;KO MI-JUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.13-25
    • /
    • 1997
  • Sobolev approximation can be adopted to a macroscopic supersonic motion comparatively larger than a random (thermal) one. It has recently been applied not only to the winds of hot early type stars, but also to envelopes of late type giants and/or supergiants. However, since the ratio of wind velocity to stochastic one is comparatively small in the winds of these stars, the condition for applying the Sobolev approximation is not fulfilled any more. Therefore the validity of the Sobolev approximation must be checked. We have calculated exact P Cygni profiles with various velocity ratios, $V_\infty/V_{sto}$, using the accelerated lambda iteration method, comparing with those obtained by the Sobolev approximation. While the velocity ratio decrease, serious deviations have been occured over the whole line profile. When the gradual increase in the velocity structure happens near the surface of star, the amount of deviations become more serious even at the high velocity ratios. The investigations have been applied to observed UV line profile of CIV in the Copernicus spectrums $of\;\zeta\;Puppis\;and\;NV\;of\;\tau\;Sco$. In case of $\tau$ Sco which has an expanding envelope with the gradual velocity increase in the inner region, The Sobolev approximation has given the serious deviations in the line profiles.

  • PDF

Dynamic Characteristics and Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid (유체유동 회전 외팔 파이프의 동특성 및 안정성 해석)

  • Kim, Dong-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1185-1190
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Also, the equation of motion is derived applying a modeling method that employs hybrid deformation variables. Generally, the system of pipe conveying fluid becomes unstable by flutter. So, we studied about the influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method. The influences of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity$(u_{cr})$ is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) always occur in the second mode of the system.

  • PDF

Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Characteristics of Premixed Flames in a Double Concentric Burner (이중 동축류 버너에서의 예혼합화염 특성에 관한 연구)

  • Gwon, Seong-Jun;Cha, Min-Seok;Choe, Man-Su;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1662-1669
    • /
    • 2000
  • Various flame types are observed in a double concentric burner by varying equivalence ratio and flow rates in each tube. Observed flame types include bunsen-type flame, ring-shaped flame, outer lifted flame, inner lifted flame, and oscillatory lifted flame, The doman of existence of various flames is mapped with equivalence ratio and annular jet velocity. Each flame is investigated through direct photography and OH PLIF. As central air velocity increase, the blowout region is diminished and lifted oscillating flames are observed. Inner lifted flames are observed from bunsen flames or rich shaped flames by increasing central air velocity. For inner lifted flames, annular jet velocity, at flame liftoff decreases with increasing central air jet velocity. Axial velocity profile and temperature fie이 using LDV and CRS, respectively, for a typical inner lifted flame are also measured through which the role of tribrachial flame for stabilization in emphasized.

Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF

Thruster Modeling for Underwater Vehicle with Ambient Flow Velocity and its Incoming Angle (외부 유체의 영향을 고려한 무인잠수정의 추진기 모델)

  • Kim, Jin-Hyun;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.109-118
    • /
    • 2007
  • The thruster is the crucial factor of an underwater vehicle system, because it is the lowest layer in the control loop of the system. In this paper, we propose an accurate and practical thrust modeling for underwater vehicles which considers the effects of ambient flow velocity and angle. In this model, the axial flow velocity of the thruster, which is non-measurable, is represented by ambient flow velocity and propeller shaft velocity. Hence, contrary to previous models, the proposed model is practical since it uses only measurable states. Next, the whole thrust map is divided into three states according to the state of ambient flow and propeller shaft velocity, and one of the borders of the states is defined as Critical Advance Ratio (CAR). This classification explains the physical phenomenon of conventional experimental thrust maps. In addition, the effect of the incoming angle of ambient flow is analyzed, and Critical Incoming Angle (CIA) is also defined to describe the thrust force states. The proposed model is evaluated by comparing experimental data with numerical model simulation data, and it accurately covers overall flow conditions within 2N force error. The comparison results show that the new model's matching performance is significantly better than conventional models'.

  • PDF

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.