• Title/Summary/Keyword: Velocity estimation

Search Result 1,084, Processing Time 0.037 seconds

Koreanized Analysis System Development for Groundwater Flow Interpretation (지하수유동해석을 위한 한국형 분석시스템의 개발)

  • Choi, Yun-Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, the algorithm of groundwater flow process was established for koreanized groundwater program development dealing with the geographic and geologic conditions of the aquifer have dynamic behaviour in groundwater flow system. All the input data settings of the 3-DFM model which is developed in this study are organized in Korean, and the model contains help function for each input data. Thus, it is designed to get detailed information about each input parameter when the mouse pointer is placed on the corresponding input parameter. This model also is designed to easily specify the geologic boundary condition for each stratum or initial head data in the work sheet. In addition, this model is designed to display boxes for input parameter writing for each analysis condition so that the setting for each parameter is not so complicated as existing MODFLOW is when steady and unsteady flow analysis are performed as well as the analysis for the characteristics of each stratum. Descriptions for input data are displayed on the right side of the window while the analysis results are displayed on the left side as well as the TXT file for this results is available to see. The model developed in this study is a numerical model using finite differential method, and the applicability of the model was examined by comparing and analyzing observed and simulated groundwater heads computed by the application of real recharge amount and the estimation of parameters. The 3-DFM model is applied in this study to Sehwa-ri, and Songdang-ri area, Jeju, Korea for analysis of groundwater flow system according to pumping, and obtained the results that the observed and computed groundwater head were almost in accordance with each other showing the range of 0.03 - 0.07 error percent. It is analyzed that the groundwater flow distributed evenly from Nopen-orum and Munseogi-orum to Wolang-bong, Yongnuni-orum, and Songja-bong through the computation of equipotentials and velocity vector using the analysis result of simulation which was performed before the pumping started in the study area. These analysis results show the accordance with MODFLOW's.

Developing Fire-Danger Rating Model (산림화재예측(山林火災豫測) Model의 개발(開發)을 위(爲)한 연구(硏究))

  • Han, Sang Yeol;Choi, Kwan
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.257-264
    • /
    • 1991
  • Korea has accomplished the afforestation of its forest land in the early 1980's. To meet the increasing demand for forest products and forest recreation, a development of scientific forest management system is needed as a whole. For this purpose the development of efficient forestfire management system is essential. In this context, the purpose of this study is to develop a theoretical foundation of forestfire danger rating system. In this study, it is hypothesized that the degree of forestfire risk is affected by Weather Factor and Man-Caused Risk Factor. (1) To accommodate the Weather Factor, a statistical model was estimated in which weather variables such as humidity, temperature, precipitation, wind velocity, duration of sunshine were included as independent variables and the probability of forestfire occurrence as dependent variable. (2) To account man-caused risk, historical data of forestfire occurrence was investigated. The contribution of man's activities make to risk was evaluated from three inputs. The first, potential risk class is a semipermanent number which ranks the man-caused fire potential of the individual protection unit relative to that of the other protection units. The second, the risk sources ratio, is that portion of the potential man-caused fire problem which can be charged to a specific cause. The third, daily activity level is that the fire control officer's estimate of how active each of these sources is, For each risk sources, evaluate its daily activity level ; the resulting number is the partial risk factor. Sum up the partial risk factors, one for each source, to get the unnormalized Man-Caused Risk. To make up the Man-Caused Risk, the partial risk factor and the unit's potential risk class were considered together. (3) At last, Fire occurrence index was formed fire danger rating estimation by the Weather Factors and the Man-Caused Risk Index were integrated to form the final Fire Occurrence Index.

  • PDF

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site (실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Choi, Doo-Houng;Koh, Yong-Kwon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.201-216
    • /
    • 2013
  • Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.

CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002 (2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환)

  • Choi, Tae-jin;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.70-80
    • /
    • 2003
  • We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.

Echocardiographic Diagnosis of Pulmonary Arterial Hypertension in Chronic Lung Disease with Hypoxemia (만성 저산소성 폐질환의 폐동맥 고혈압에 대한 심초음파 검사)

  • Chang, Jung-Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.6
    • /
    • pp.846-855
    • /
    • 1999
  • Background : Secondary pulmonary hypertension is an important final endpoint in patients with chronic hypoxic lung disease, accompanied by deterioration of pulmonary hemodynamics. The clinical diagnosis of pulmonary hypertension and/or cor pulmonale could be difficult, and simple noninvasive evaluation of pulmonary artery pressures has been an relevant clinical challenge for many years. Doppler echocardiography might to be a more reliable method for evaluating pulmonary hemodynamics in such patients in terms of the accuracy, reproducibility and easiness for obtaining an appropriate echocardiographic window than M-mode echocardiography. The aim of this study was to assess echocardiographic parameters associated with pulmonary arterial hypertension, defined by increasing right ventricular systolic pressure(RVSP), calculated from trans-tricuspid gradient in patients with chronic hypoxic lungs. Method : We examined 19 patients with chronic hypoxic lung disease, suspected pulmonary hypertension under the clinical guidelines by two dimensional echocardiography via the left parasternal and subcostal approach in a supine position. Doppler echocardiography measured RVSP from tricuspid regurgitant velocity in continuous wave with 2.5MHz transducer and acceleration time(AT) on right ventricular outflow tract in pulsed wave for the estimation of pulmonary arterial pressure. Results : On echocardiography, moderate to severe degree of pulmonary arterial hypertension was defined as RVSP more than 40mmHg, presenting tricuspid regurgitation. Increased right ventricular endsystolic diameter and shortened AT were noted in the increased RVSP group. Increased RVSP was correlated negatively with the shortening of AT. Other clinical data, including pulmonary functional parameters, arterial blood gas analysis and M mode echocardiographic parameters were not changed significantly with the increased RVSP. Conclusion : These findings suggest that shortened AT on pulsed doppler can be useful when quantifying pulmonary arterial pressure with increased RVSP in patients with chronic lung disease with hypoxemia. Doppler echocardiography in pulmonary hypertension of chronic hypoxic lungs is an useful option, based on noninvasiveness under routine clinical practice.

  • PDF

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.

Estimation of Mean Surface Current and Current Variability in the East Sea using Surface Drifter Data from 1991 to 2017 (1991년부터 2017년까지 표층 뜰개 자료를 이용하여 계산한 동해의 평균 표층 해류와 해류 변동성)

  • PARK, JU-EUN;KIM, SOO-YUN;CHOI, BYOUNG-JU;BYUN, DO-SEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.208-225
    • /
    • 2019
  • To understand the mean surface circulation and surface currents in the East Sea, trajectories of surface drifters passed through the East Sea from 1991 to 2017 were analyzed. By analyzing the surface drifter trajectory data, the main paths of surface ocean currents were grouped and the variation in each main current path was investigated. The East Korea Warm Current (EKWC) heading northward separates from the coast at $36{\sim}38^{\circ}N$ and flows to the northeast until $131^{\circ}E$. In the middle (from $131^{\circ}E$ to $137^{\circ}E$) of the East Sea, the average latitude of the currents flowing eastward ranges from 36 to $40^{\circ}N$ and the currents meander with large amplitude. When the average latitude of the surface drifter paths was in the north (south) of $37.5^{\circ}N$, the meandering amplitude was about 50 (100) km. The most frequent route of surface drifters in the middle of the East Sea was the path along $37.5-38.5^{\circ}N$. The surface drifters, which were deployed off the coast of Vladivostok in the north of the East Sea, moved to the southwest along the coast and were separated from the coast to flow southeastward along the cyclonic circulation around the Japan Basin. And, then, the drifters moved to the east along $39-40^{\circ}N$. The mean surface current vector and mean speed were calculated in each lattice with $0.25^{\circ}$ grid spacing using the velocity data of surface drifters which passed through each lattice. The current variance ellipses were calculated with $0.5^{\circ}$ grid spacing. Because the path of the EKWC changes every year in the western part of the Ulleung Basin and the current paths in the Yamato Basin keep changing with many eddies, the current variance ellipses are relatively large in these region. We present a schematic map of the East Sea surface current based on the surface drifter data. The significance of this study is that the surface ocean circulation of the East Sea, which has been mainly studied by numerical model simulations and the sea surface height data obtained from satellite altimeters, was analyzed based on in-situ Lagrangian observational current data.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

Ecological Characteristics of Korean Dark Sleeper, Odontobutis interrupta in Geumdang Stream, Korea (금당천에 서식하는 얼록동사리(Odontobutis interrupta)의 생태 특징)

  • Hwa-Keun Byeon
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.86-93
    • /
    • 2023
  • This study investigated the ecological characteristics of Odontobutis interrupta at the Geumdang Stream from January to December 2021. The riverbed structure of the species habitat was rich in sand and mud. The water was deep, ranging from 21 to 124 cm, with an average of 48 cm. The stream velocity was slow at 0.24 (0.08-0.36) m/sec. The ratio of females to males was 1:0.98, and the total length of collected individuals ranged from 23 mm to 162 mm. The age according to the total length-frequency distribution as of May indicated that the group with a total length of 23-59 mm was one year old, the group with 60-99 mm was two years old, the group with 100-139 mm was three years old, and the group with 140-162 mm was four years old. As a secondary gender characteristic, the females genital papilla had a cylindrical shape, a hollow inside of the tip, and a longer diameter than males. The males had a cone shape with a pointed end. Sexually mature males had the nuptial color, with a black abdomen and whole body. Some females with a length ranging from 60 to 69 mm and all females 70 mm longer were sexually mature. Some males with a length ranging from 70 to 79 mm and all males 80 mm longer were sexually mature. The spawning season was from May to July, and the water temperature was between 19.6℃ to 29℃ during that period. The prosperous spawning season was June (26℃). The average number of eggs in the ovaries was 2,473 (883-4,955) per matured female, and the matured eggs were yellowish and spherical with a mean diameter of 1.42 (1.20-0.54) mm. The correlation between total length and weight was BW=0.0000006TL3.21 with the constant a as 0.0000006 and parameter b as 3.21. The condition factor (K) was 1.67 (1.18-2.43) on average, and the slope was 0.116.

Estimation of Dynamic Material Properties for Fill Dam : II. Nonlinear Deformation Characteristics (필댐 제체 재료의 동적 물성치 평가 : II. 비선형 동적 변형특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Choo, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.87-105
    • /
    • 2009
  • Nonlinear dynamic deformation characteristics, expressed in terms of normalized shear modulus reduction curve (G/$G_{max}-\log\gamma$, G/$G_{max}$ curve) and damping curve (D-$\log\gamma$), are important input parameters with shear wave velocity profile ($V_s$-profile) in the seismic analysis of (new or existing) fill dam. In this paper, the reasonable and economical methods to evaluate the nonlinear dynamic deformation characteristics for core zone and rockfill zone respectively are presented. For the core zone, 111 G/$G_{max}$ curves and 98 damping curves which meet the requirements of core material were compiled and representative curves and ranges were proposed for the three ranges of confining pressure (0~100 kPa, 100 kPa~200 kPa, more than 200 kPa). The reliability of the proposed curves for the core zone were verified by comparing with the resonant column test results of two kinds of core materials. For the rockfill zone, 135 G/$G_{max}$ curves and 65 damping curves were compiled from the test results of gravelly materials using large scale testing equipments. The representative curves and ranges for G/$G_{max}$ were proposed for the three ranges of confining pressure (0~50 kPa, 50 kPa~100 kPa, more than 100 kPa) and those for damping were proposed independently of confining pressure. The reliability of the proposed curves for the rockfill zone were verified by comparing with the large scale triaxial test results of rockfill materials in the B-dam which is being constructed.