• Title/Summary/Keyword: Velocity Suppression

Search Result 106, Processing Time 0.037 seconds

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance (노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

An Experimental Study for the Effect of Ventilation Velocity on Performance of a High Pressure Water Mist Fire Suppression System (객차내 환기속도가 고압 미세물분무 화재제어 시스템 성능에 미치는 영향에 대한 실험적 연구)

  • Kim, Dong-Woon;Bae, Seung-Yong;Ryou, Hong-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • This experiments are perfol1ned to investigate the effect of ventilation velocity on a high pressure water mist tire suppression in train. The experiment is conducted in half scale modeled train of a steel-welled enclosure (5.0m${\times}$2.4m${\times}$2.2m). The ventilation velocity is controlled by the ventilation duct through an inverter in the range of 0 to 3m/s. The coverage-radius and an injection angle of an high pressure water mist system are measured. The mist nozzle with 5-injection holes is operated with pressure 60bar. The heptane pool fires are used. The fire extinguishment times and the temperature are measured for the ventilation velocities. In conclusion, because the momentum of injected water mist is more dominant than that of ventilation air, the characteristics of water mist, the fire extinguishment times and the temperature are affected very little by ventilation velocity.

A Study of an Improvement of Swing-out Suppression Algorithm of an All Wheel Steering Electronic Control Unit (전 차륜 조향 시스템 전자 제어 장치의 스윙 아웃 억제 알고리즘 개선에 대한 연구)

  • Lee, Hyo-Geol;Chung, Ki-Hyun;Choi, Kyung-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.25-33
    • /
    • 2013
  • All-wheel steering (AWS) system is applied to articulated vehicles to reduce turning radius. The swing-out suppression algorithm is applied to AWS ECU, a key component of AWS system. The swing-out suppression algorithm applied to AWS ECU has a problem when velocity of vehicle is changed. In this paper, new algorithm based on moving distance that solve velocity problem is proposed. The HILS simulation and the test articulated bus is used to validate algorithm.

Assessment of Anti-Scattering Effect by Aluminium Sulfate (황산알루미늄수화물에 의한 비산방지 효과 평가)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.470-474
    • /
    • 2010
  • Various anti-scattering agents for suppression of dust scattering at waste depository were compared in this study. Based on the price, easy of usage, and no toxicity, 1% of $Al_2(SO_4)_3$ was selected as surface hardening agents. Only lower than 2% of total weight were flied when wind speed was monthly maximum velocity during 1 hr. These results were quite good with comparison of S anti-scattering agents which was made by C company in Korea. When $Al_2(SO_4)_3$ was spread, the surface waste became hard therefore the effect of suppression of scattering dust was long lasting. It was recommend that 2% of $Al_2(SO_4)_3$ was spread to keep suppression of scattering dust when sudden gust of wind such as natural disaster was occurred.

Effect of the Velocity Suppression Techniques for a Mushy Solidification on Steady-state Mushy Region (머시응고에 대한 속도감쇠 기법이 정상상태 머시영역에 미치는 영향)

  • Kim, Woo-Seung;Kim, Deok-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1657-1668
    • /
    • 1998
  • In the analysis of a mushy solidification system with natural convection using a fixed grid method, the enthalpy method has been used to account for the release of latent heat. The variable viscosity, Darcy source, and hybrid methods have been employed for the velocity suppression in a mushy region. The choice of the values of solid viscosity and permeability constant in conjunction with the Darcy source term plays an important role in forming the location and shape of the phase boundaries. In this work the effects of these major parameters related to steady-state behavior in the system of mushy solidification are investigated through a simple test problem. The effective specific heat based on the spatial gradients of the enthalpy and temperature is adopted for the treatment of the release of latent heat. The effects of the Prandtl and Rayleigh numbers on the shape of mushy region are examined using the hybrid method.

Comparison of Centralized and Decentralized Control for Vibration Suppression of a Beam (보의 진동억제를 위한 중앙화 및 비중앙화 제어의 비교 연구)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.494-497
    • /
    • 2005
  • Direct velocity feedback (DVFB) control with a collocated distributed actuator and point sensor pair is known that it offers a good stability with high performance when the control strategy is applied at the suppression of structural vibration. Also decentralized control method introduced to offer to reduce implementaion effort and malfunction due to failure in sensors and actuators of control system has become an important position in DVFB. In this paper, the decentralized control is compared with centralized control in terms of vibrational velocity reduction in a clamped-clamped beam.

  • PDF

An Experimental Evaluation for the Effect of Ventilation Velocity in Subway Train on Performance of a High Pressure Water Mist Fire Suppression (지하철 객차 내 환기 속도가 고압 미세물분무 화재제어 시스템의 성능에 대한 실험평가)

  • Kim, Dong-Woon;Bae, Seung-Yong;Kim, Dong-Suk;Park, Won-Hee;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1307-1312
    • /
    • 2007
  • This experiments are performed to investigate the effect of ventilation velocity on a high pressure water mist fire suppression in subway train. The experiment is conducted in half scale modeled train of a steel-welled enclosure (8.0m*2.4m*2.1m). The ventilation velocity is controlled by the ventilation duct through an inverter in the range of 0 to 2 m/s. The coverage-radius and an injection angle of an high pressure water mist system are measured. The mist nozzle with 7-injection holes is operated with pressure 80 bar. The heptane pool fires are used. The fire extinguishment times and the temperatures are measured for the ventilation velocities. In conclusion, because the momentum of injected water mist is more dominant than that of ventilation air, the characteristics of water mist, the fire extinguishment times and the temperatures are affected very little by ventilation velocity.

  • PDF

Vibration control of laminated composite plates using embedded smart layers

  • Reddy, J.N.;Krishnan, S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.135-156
    • /
    • 2001
  • Analytical solutions and finite element results of laminated composite plates with smart material layers embedded in them are presented in this study. The third-order plate theory of Reddy is used to study vibration suppression characteristics. The analytical solution for simply supported boundary conditions is based on the Navier solution procedure. The velocity feedback control is used. Parametric effects of the position of the smart material layers, material properties, and control parameters on the suppression time are investigated. It has been found that (a) the minimum vibration suppression time is achieved by placing the smart material layers farthest from the neutral axis, (b) using thinner smart material layers have better vibration attenuation characteristics, and, (c) the vibration suppression time is larger for a lower value of the feedback control coefficient.

A Numerical Study on the Fire Suppression Characteristics of a Water Mist with Natural Wind in a Road Tunnel (도로터널에서 자연풍에 의한 미세물분무의 화재제어 특성에 관한 수치해석 연구)

  • Hwang, Cheol-Hong;Kim, Han-Su;Lee, Chang-Eon;Jang, Young-Nam;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 2008
  • In this study, the fire suppression characteristics of a water mist with natural wind in a road tunnel were calculated using the FDS(Fire Dynamic Simulation) code. In addition, the cooling and the chemical kinetic effects of water vapor on fire extinction ere investigated in a counterflow non-premixed flame using a detailed chemistry. As a result, the behavior of fire plume and the spray characteristics of water mist are modified remarkably with the increasing of wind velocity. In the case which is not the external natural wind, small droplets are more efficient in fire suppression than large droplets. However, the large droplets show better results on the fire suppression than the small droplets with the increasing of wind velocity. It can be estimated that the natural wind disturb the penetration of water droplets into the flame region and decrease the effect of oxygen dilution. Finally, it can be identified that the fire into the natural wind can be suppressed with smaller amount of $H_2O$ by flame stretching effect in the flame region than one in an enclosure, and the chemical kinetic effects of $H_2O$ on fire extinction are not affected significantly the velocity of natural wind.