• 제목/요약/키워드: Velocity Response

검색결과 1,245건 처리시간 0.026초

지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구 (Evaluations of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Underground Structures)

  • 윤종구;김동수;유제남
    • 한국지반공학회논문집
    • /
    • 제19권4호
    • /
    • pp.211-221
    • /
    • 2003
  • 지중구조물의 내진해석에 자주 이용되는 방법으로 응답변위법이 있다. 응답변위법은 정적인 해석방법으로, 이 방법의 핵심은 지진시 지중구조물 측벽에 작용하는 지반변위를 산정하는 것이다. 이때 해석대상부지의 고유주기에 해당하는 기반면의 속도 응답스펙트럼 값을 결정하는 일이 매우 중요하다. 본 연구에서는 국내 설계지반운동기준에 적합한 기반면의 속도 응답스펙트럼 산정과 지반응답해석 없이 응답변위를 신뢰성있게 산정하는 간편법에 대한 연구를 수행하였다. 해석결과 국내 내진설계 기준의 S$_A$ 지반의 지표면 가속도 응답스펙트럼을 적분하여 속도 응답스펙트럼으로 환산하는 방법과 지반을 두 개의 층으로 구분하여 지진시 지반의 응답변위를 산정하는 방법을 현업 설계에 적용할 경우 경제적으로 큰 잇점이 있을 것으로 판단된다.

전기자동차의 유럽 측면 충돌 특성 기초 연구(II) (A Basic Study of the European Side Impact Characteristics of Electric Vehicle(II))

  • 조용범;신효철
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.143-152
    • /
    • 2002
  • European side impact analysis of an electric vehicle was done using the robust design method. In order to minimize VC as well as rib deflection, the injury response table which consists of rib deflection and VC response table has been introduced. The sensitivities and interactions are almost the same when it was compared with those of rib deflection and VC response table. Using internal energy of the factors, the starting time of dummy rib deflection and the contact average velocity, the internal energy and time-velocity response table were introduced. It is shown that the results of the new response tables have the similar characteristics to those of the Injury response table. It is suggested that the internal energy and time-velocity response table should be utilized to minimize injuries.

지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구 (Evaluation of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Buried Structures)

  • 김동수;김동수;유제남
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.129-139
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of buried structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by direct integrating the ground-surface acceleration response spectrum of soil type $S_{A}$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.n.

  • PDF

Near field 지진기록 분류에 따른 특성 비교 (Response Characteristics According to the Selection Procedure of Near Field EQGMS)

  • 배미혜;한상환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.527-532
    • /
    • 2002
  • Near field ground motions contain distinct and large amplitude pulses in both velocity and displacement. This paper investigates characteristics of near field earthquakes and their effects on seismic demands. 20 EQGMs were selected for this purpose that satisfied 5 conditions for Near field motion. Among them ten EQGMs have one distinct peak velocity pulse in the velocity time history. In this study the responsed are Linear Elastic Response Spectrum(LERS), Response Modification Factor(R) and Inelastic Response Spectrum(IRS). The effect of the selection of Near field EQGMs on these response parameters are investigated.

  • PDF

Amplification based on shear wave velocity for seismic zonation: comparison of empirical relations and site response results for shallow engineering bedrock sites

  • Anbazhagan, P.;Aditya, Parihar;Rashmi, H.N.
    • Geomechanics and Engineering
    • /
    • 제3권3호
    • /
    • pp.189-206
    • /
    • 2011
  • Amplification based on empirical relations is widely used for seismic microzonation of urban centers. Amplifications are used to represent the site effects of a particular soil column. Many empirical correlations are available to estimate the amplification of seismic waves. These correlations are based on the ratio of shear wave velocity of foundation/rock to soil velocity or 30 m equivalent shear wave velocity ($Vs^{30}$) and are developed considering deep soil data. The aim of this work is to examine the applicability of available amplification relations in the literature for shallow engineering bedrock sites by carrying out site response studies. Shear wave velocity of thirteen sites having shallow engineering bedrock have been selected for the study. In these locations, the depth of engineering bedrock (> 760 ${\pm}$ 60 m/s) is matched with the drilled bore hole. Shear wave velocity (SWV) has been measured using Multichannel Analysis of Surface Wave survey. These sites are classified according to the National Earthquake Hazards Reduction Program (NEHRP) classification system. Amplifications for an earthquake are arrived for these sites using empirical relations and measured SWV data. Site response analysis has been carried out in SHAKE using SWV and using synthetic and real earthquake data. Amplification from site response analysis and empirical relations are compared. Study shows that the amplification arrived using empirical relations does not match with the site response amplification. Site response amplification is much more than empirical values for same shear wave velocity.

가스 파이프라인의 차량진동 응답 예측 (A Response Estimation for Vehicle Vibration of Gas Pipeline)

  • 박선준;박연수;강성후
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, vibration response of aerial gas pipeline due to vehicle loads was quantitatively estimated through experiment and analysis in open cut construction site. The vehicle vibration of various construction machines causes serious effect to the aerial gas pipeline. The new vibration prediction equations presented in this study can estimate the vibration velocity response of the aerial gas pipeline. In the nitration prediction equations, the vehicle′s weight and traveling velocity, which are the sources of vibration, are combined into the term called, "scaled weight" Methods to reduce vibration were proposed in case the vibration velocity response of the gas pipeline exceeded the vibration criterion, using the vibration prediction equations presented in this study. One was to limit the vehicle′s traveling velocity and the other to install the isolation equipment. Both methods can be estimated quantitatively.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

5개 중규모 지진의 속도 관측자료를 이용한 수평 응답스펙트럼 특성 분석 (Analysis of Characteristics of Horizontal Response Spectrum of Velocity Ground Motions from 5 Macro Earthquakes)

  • 김준경
    • 터널과지하공간
    • /
    • 제21권6호
    • /
    • pp.471-479
    • /
    • 2011
  • 최근 한반도 및 주변해역에서 발생한 규모 4.8 이상의 5개 중규모 지진으로부터 관측된 속도 지반운동 파형을 이용하여 수평 응답스펙트럼을 분석하고 결과를 우선 가속도 지반운동을 이용하여 얻어진 수평 응답스펙트럼, 국내 원자력 관련 구조물의 내진설계 기준, 마지막으로 국내 일반 구조물 및 건축물 내진설계기준과 각각 비교하였다. 연구에 이용된 지반운동은 수평성분 102개(NS 및 EW 성분 포함)이며 고유진동수에 따른 응답을 구하고 각각의 최대 지반 속도 값을 이용하여 정규화 분석을 수행하였다. 첫째, 가속도 응답스펙트럼과 비교한 결과 속도 응답스펙트럼 값은 특히 중간주기에서 높은 응답을 보여 주었고 이에 비해 가속도 응답스펙트럼은 특히 단주기 즉 높은 고유진동수 영역에서 높은 응답을 보여 주었다. 둘째, 국내 원자력시설물의 내진기준으로 이용되고 있는 Reg. Guide 1.60과 비교한 결과 속도 응답스펙트럼 값은 약 6-7Hz를 시작점으로 보다 낮은 장주기 영역에서 기준값을 초과하는 현상을 보여 주었다. 셋째, 500년 재래주기에 해당하는 국내 일반 구조물 및 건축물 내진설계기준인 표준 설계응답스펙트럼을 SC, SD 및 SE지반 조건과 같은 3개 지반조건과 동시에 비교한 결과 차례로 약 1.5초, 2초 및 3초에서 시작하여 보다 장주기 영역에서 국내 일반 구조물 표준 설계 응답스펙트럼값을 초과하였다. 동일한 부지에서 일반적으로 가속도 응답스펙트럼은 단주기에서 가장 큰 값을 나타내며, 속도 응답 스펙트럼은 중간주기에서 가장 크며, 마지막으로 변위 응답스펙트럼은 장주기에서 가장 큰 값을 가진다는 국외 연구결과가 국내 지반운동을 이용한 결과에서 역시 적용가능하다는 점을 확인시켜 주었다. 최근 국내에서도 건축물의 초고층화 등으로 구조물의 디자인이 기존의 단주기에 비해 중간주기 및 장주기 영역이 상대적으로 강조되고 있어 이러한 중간주기영역에서 수평 응답스펙트럼의 정보는 향후 대단히 중요하다고 할 수 있다.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어 (Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어 (Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF