• Title/Summary/Keyword: Velocity Profile

Search Result 1,022, Processing Time 0.03 seconds

Theoretical Analysis on the Velocity Profile of Newtonian Fluids within Modelled Asymmetric Membrane Pores (모델화한 비대칭형 막기공에서 뉴톤 유체의 속도분포에 관한 이론해석)

  • 전명석;김재진
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.142-149
    • /
    • 1997
  • The extended analysis on the diverging flow through asymmetric membrane pores has been performed in this study. Afore rigorous equations of velocity profile relevant to the divergent slit and cone shaped channels, which are widely used as a general pore model, have been obtained by employing a creeping flow approach of Newtonian fluids. As a degree of asymmetry (i.e., diverging angle) is increased, the predicted flow function shifts Toward the center region due to the incorporated wall effect, so that the overall velocity profile becomes decreased. It is true, as expected, that when the divergent channel is in the low diverging angle limit, the channel flow results in the Poiseuillean fashion by utilizing a lubrication approximation. The flow rate equation of each type of channel has been developed from the combined solution of velocity profile and pressure fields. The effect of diverging flow on the flow rate enhancement has been remarkably predicted, in which the flow rate increases with the increase of pore asymmetry. The advantage of our theoretical results lies in the analytical expression for the diverging flow behavior through pore channels as well as its ability to play a fundamental role on the related membrane filtrations such as microfiltration and ultrafiltration.

  • PDF

Beach Profile Change and Equilibrium due to Irregular Waves in the Nearshore Region (천해 불규칙파에 의한 해빈변형 및 평형)

  • Kang, Hyo-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.95-102
    • /
    • 1996
  • The skewness of near-bottom velocity distribution caused by the nonlinear interaction of the second order waves proposed by Wells (1967) has been re-evaluated. The direction of cross-shore sediment transport was related to the sign of the third moment (skewness) of velocity distribution, and a new concept of neutral depth which can explain the recovery of beach equilibrium after a disturbance is suggested. The seasonal change of beach profile due to the change of wave condition (storm-swell profile) is interpreted in terms of nonlinear interaction of the waves rather than the conventional wave steepness. The beach is eroded (storm profile) when the nonlinear interaction of the waves is strong (storm wave), whereas the beach is accreted (swell profile) when the nonlinear interaction is weak (swell wave).

  • PDF

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF

A Study on Flow Characteristics of a Ginseng Cleaner Using PIV (PIV에 의한 인삼세척기의 특성연구)

  • 송치성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.140-145
    • /
    • 2000
  • The objective of experimental study is to apply simultaneous measurement by PIV(Particle Image Velocimetry) to high_speed flow characteristics within ginseng cleaner model. Three different kinds of flow rate(15.20 27ℓ/min) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. The instantaneous velocity distribution time0mean velocity distribution and velocity profile are represented quantitatively for the deeper understanding of the flow characteristics in a ginseng cleaner model.

  • PDF

An Assessment of Air Sampling Location for Stack Monitoring in Nuclear Facility (원자력시설 굴뚝 내 공기시료채취 위치의 적절성 평가)

  • Lee, JungBok;Kim, TaeHyoung;Lee, JongIl;Kim, BongHwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and $10{\mu}m$ aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

A Study on the Development of the Gear Profile Design Program (기어 치형 설계 프로그램 개발에 관한 연구)

  • Jung, Sung-Pil;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.104-111
    • /
    • 2009
  • In this paper, the gear design program is presented. The profile of gears is created using classical mathematic formulations. In each gear, a kinematic joint is applied and one can define the 20 contact condition between gear pairs. Initial and boundary conditions such as force, torque, velocity, acceleration, etc. can be set. Thus, it is possible to analyze dynamic characteristics of gear pairs such as reaction moment and the variation of angular velocity. In order to find the optimal profile of gear pairs, two optimization methods based on design of experiments are inserted in the program; One is the Taguchi method and the other is the response surface analysis method. To verify the program, the rack & pinion gear is created and analyzed. Simulation results show that the developed program is useful and result data is reliable.

Application and Analysis of Field Test and Geophysical Exploration for Dynamic Material Properties of Rockfill Dam (사력댐 동적물성 추정을 위한 현장조사기법 적용 및 분석)

  • Lee, Jong-Wook;Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.352-359
    • /
    • 2005
  • In this study, seismic refraction survey and MASW at dam crest and down-hole test and cross hole test in the boring holes located in dam crest through the core are performed to fin out dynamic material properties, are needed to evaluate dynamic safety of rockfill dam using dynamic analysis method. From the field test and geophysical exploration, applied such as above, p-wave and s-wave velocity profile of each layer of dam body. Dynamic material properties, such as elastic modulus, shear modulus, poissong's ration, are obtained from p-wave and s-wave velocity profile and density profile from formation density logging test.

  • PDF

A Study on Optimum Tooth Profile of Pin-Pinion Gear for Linear Motion (직선이송용 Pin-Pinion Gear의 최적 치형에 대한 연구)

  • Ham, S.H.;Nam, W.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.64-70
    • /
    • 2010
  • In this study, designing of precise linear transferring device which can be applied to industrial machine and robot industry has been introduced. The direction of power flow and output feature are similar to current Rack-Pinion type. However, unlimited length extensity via rack modulizing, and securing high velocity transportation have been realized by applying Pin-Pinion Gear type at the operation part. The analysis has been calculated to obtain the Pin-Pinion Gear's optimized tooth profile. As a result of research, it is impossible to control precisely even overlap at the teeth of involute and sprocket. Because they have peculiar gearing structure. Therefore, modified cycloid tooth has been proposed to perform high velocity, precise control without backlash.

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ghandourah, Emad;Alhawsawi, Abdulsalam;Alshoaibi, Adil
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.221-228
    • /
    • 2022
  • Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

FORMATION OF LINE PROFILES BY THE WINDS OF EARLY TYPE STARS

  • KANG IVIIN-YOUNG;KIM KYUNG-MEE;CHOE SEUNG-URN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.263-264
    • /
    • 1996
  • We have solved the radiative transfer problem using a Sobolev approximation with an escape probability method in case of the supersonic expansion of a stellar envelope to an ambient medium. The radiation from the expanding envelope turns out to produce a P-Cygni type profile. In order to investigate the morphology of the theoretical P-Cygni type profile, we have treated $V{\infty},\;V_{sto},\;{\beta}$ (parameter for the velocity field), M and $\epsilon$ (parameter for collisional effect) as model parametrs. We have found that the velocity field and the mass loss rate affect the shapes of the P-Cygni type profiles most effectively. The secondarily important factors are $V{\infty},\;V_{sto}$. The collisional effect tends to make the total flux increase but not so .much in magnitude. We have infered some physical parameters of 68 Cyg, HD24912, and $\xi$ persei such as V$\infty$, M from the model calculation, which shows a good agreement with the observational results.

  • PDF