• Title/Summary/Keyword: Velocity Profile(Total Pressure Loss Coefficient)

Search Result 2, Processing Time 0.019 seconds

Investigation of Pressure Loss in Bent Duct (Bent Duct 내부 유동의 손실 측정)

  • Roh, U-Jin;Im, Ju-Hyun;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.295-298
    • /
    • 2009
  • Bent ducts add loss and decrease efficiency. Many researchers have been conducted the performances of bent ducts, but their shapes of inlet and outlet are same. However, in this investigation, the focus is on a bent duct which is annular at the inlet and circular at the outlet. The bent duct of these complex shapes has not been investigated, but has been used in many fields. The performance of such bent duct is investigated under inlet speed 54 m/s and Re = 238,000. Wall static pressure tappings are located surface of the bent duct to measure the static pressure and a probe is traversed at the inlet and outlet of the bent duct to measure the total pressure. As a result, it presents static pressure distribution on the bent duct surface, streamwise velocity profile at inlet and outlet of the bent duct and total pressure loss profile at outlet. In this investigation, the total pressure loss coefficient is 0.243.

  • PDF

An Experimental Study on Loss Coefficient of Turbine Cascade with Incidence Angles (입사각의 변화에 따른 터빈 캐스케이드에서 손실계수에 관한 실험적 연구)

  • Lee, Ju-Hyung;Hur, Won-Hae;Jeon, Chang-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.48-56
    • /
    • 1999
  • For the study on loss coefficients of turbine cascade with variation of incidence angle, the wind-tunnel tests were performed under the ranges in velocity of 10 m/s, 15 m/s, 20 m/s and incidence angles from $-20^{\circ}\;to\;20^{\circ}$ by intervals of $5^{\circ}$. Comparing our results with Soderberg's prediction, differences in loss coefficient were $2.5\%\;and\;2.8\%$ each for 10 m/s and 15 m/s. A large disagreement of $30.3\%$ was showed at 20 m/s freestream velocity. The comparisons of these test results with Ainley's prediction showed an $8\%$ difference in the case of 20 m/s freestream velocity. Test results were approximately comparable with Ainley's loss prediction's in incidence angles. Generally, averaged total pressure loss seemed to be decreased as Reynolds number increased. The total pressure loss coefficients were increased parabolically, as incidence angles were increased negatively and positively from $0^{\circ}$, in all speed ranges. At the far low freestream velocities, minimum loss accurred between $-5^{\circ}\;and\;+5^{\circ}$. But this minimum range narrowed the location of this range by shifting to the direction of the angle as freestream velocity was increased.

  • PDF