• Title/Summary/Keyword: Velocity Level

Search Result 1,461, Processing Time 0.025 seconds

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

Relationship between Gait, Static Balance, and Pelvic Inclination in Patients with Chronic Stroke

  • Choe, Yu-Won;Kim, Kyu-Ryeong;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • PURPOSE: This study examined the correlations between gait, static balance, and pelvic inclination in patients with chronic stroke. METHODS: Twenty-two chronic stroke patients were included in this study. The subjects participated in gait, static balance, and pelvic inclination tests. In the gait measurement, the cadence and gait velocity were measured, and the average of three trials was calculated and recorded. The static balance was measured using a force platform. The data was captured for ten seconds, and five successful trials were recorded. Pelvic inclination in the sagittal plane was measured using a palpation meter. For data processing, a KolmogorovSmirnov test was used to determine the type of distribution for all variables. Pearson's correlation coefficient was used for correlation analysis. The correlations among the gait, static balance, and pelvic inclination was calculated. The level of significance was .05. RESULTS: Significant negative correlations were observed between the gait variables (cadence, velocity) and static balance variables (COP path length, COP average velocity, and 95% confidence ellipse area) (p < .05). On the other hand, there was no significant correlation between pelvic inclination and gait or between the pelvic inclination and static balance variables. CONCLUSION: Significant correlations were observed between the gait function and static balance. On the other hand, there were no significant correlations between the pelvic inclination and gait and static balance. These results suggest that the pelvic inclination is not an important consideration for increasing the gait function and static balance.

High Velocity Impact Analysis of Kevlar29/Phenolic Composite Plate (케블라 복합재 평판의 고속충돌 특성 수치해석)

  • Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Failure of Kevlar29/Phenolic composite plate under high velocity impact of FSP(Fragment Simulation Projectile) is investigated using a non-linear explicit finite element code, LS-DYNA. Composite laminate and impactor are idealized by solid element and interface between laminas are modeled by tied-break element in LS-DYNA. Interaction between impactor and laminate is simulated face-to-face eroding contact algorithm. When the stress level meets a failure criteria, the layer in the element is eroded. Numerical results are verified by existing test results.

Particle filter approach for extracting the non-linear aerodynamic damping of a cable-stayed bridge subjected to crosswind action

  • Aljaboobi Mohammed;Shi-Xiong Zheng;Al-Sebaeai Maged
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2024
  • The aerodynamic damping is an essential factor that can considerably affect the dynamic response of the cable-stayed bridge induced by crosswind load. However, developing an accurate and efficient aerodynamic damping model is crucial for evaluating the crosswind load-induced response on cable-stayed bridges. Therefore, this study proposes a new method for identifying aerodynamic damping of the bridge structures under crosswind load using an extended Kalman filter (EKF) and the particle filter (PF) algorithm. The EKF algorithm is introduced to capture the aerodynamic damping ratio. PF technique is used to select the optimal spectral representation of the noise. The effectiveness and accuracy of the proposed solution were investigated through full-scale vibration measurement data of the crosswind-induced on the bridge's girder. The results show that the proposed solution can generate an efficient and robust estimation. The errors between the target and extracted values are around 0.01mm and 0.003^o, respectively, for the vertical and torsional motion. The relationship between the amplitude and the aerodynamic damping ratio is linear for small reduced wind velocity and nonlinear with the increasing value of the reduced wind velocity. Finally, the results show the influence of the level of noise.

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

Development of Low-pressure Gas Gun Type Impact Tester using CFD Simulation (유동해석을 통한 저압 가스 건 타입 고속 충격시험기 개발)

  • P. H. Kim;S. K. Lee;O. D. Kwon;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2024
  • Supersonic aircraft and missiles often encounter damage issues due to high-speed collisions with small objects such as ice particles and water droplets. This can significantly impact the safety and performance of these vehicles, making the assessment and development of collision testing crucial. Existing collision testing methods have relied on equipment such as gas guns, which utilize high pressure. However, most accelerators for projectiles are large-scale devices designed for weaponry and high-pressure gases, rendering them inaccessible and unsuitable for laboratory use. Therefore, there is a need for research into easily accessible and economically efficient testing devices at the laboratory level. An impact tester can launch a projectile with a velocity of 100 m/s using low-pressure compressed air at approximately 10 bar. The velocity of the impact tester projectile is determined by the pressure within the chamber, friction, and the length of the barrel. In this study, computational fluid dynamics was utilized to define friction coefficients that match experimental results based on projectile weight, enabling accurate prediction of velocity. The resulting data provides practical and effective insights for the design of impact testers, utilizing the defined friction coefficients to understand and predict complex physical phenomena.

Vertical Profiles of Meteorological Parameters over Taegu City

  • Ahn, Byung-Ho;Kwak, Young-Sil
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.24-32
    • /
    • 1994
  • A special upper-air observation including airsonde and pibal observations was performed to investigate the characteristics features of the vertical distribution of the meteorological elements over Taegu on a selected clear day of each season from October 1991 to August 1992. The diurnal and seasonal variations of the vertical profiles of air temperature and mixing ratio were obtained from airsonde observations and wind speed and direction from pibal observations. The results of these special upper-air observations are as follow : The diurnal variation of the vertical distribution of air temperature reveals the characteristic features associated with the atmospheric boundary layer. All case days, except for the summer season, show upper-level inversion layer which influenced by surface high, and surface inversion layer produced by radiative cooling. The diurnal variation of mixing ratio shows the maximum vale at 1500 LST in both the upper and low levels, and is larger on the lower level than the upper level. The mixing ratio of the lower level is larger than that of the upper level. On the average the mixing ratio decrease with the height, and is the wettest on the summer case day and the driest on the winter case day. The diurnal variation of the wind velocity and direction are variable in the lower level with time and height, while they are steady in the upper level. On the average, the wind direction is southerly or southeasterly for the summer case day, westerly or northwesterly for the spring and fall case days, and northerly or northwesterly for the winter case day.

  • PDF

The Study on the Influence that the Understanding Degree about the Sentence Stated Math. Problems Reach the Extension of the Problem Solving Capacity. - Focusing on the Unit of Equation and Inequality in Middle School - (문장제에 대한 이해정도가 문제해결력 신장에 미치는 영향에 대한 연구 -중학교 방정식과 부등식 단원을 중심으로-)

  • 지재근;오세열
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.1
    • /
    • pp.189-200
    • /
    • 2000
  • The purpose of this thesis is that the students understand the sentence stated math problems closely related to the real life and adapted the right solving strategies try to find the solution to a problem. The following research problem were proposed. 1. How repeated thinking lessons develop the understanding of problems and influence the usage of correct problem solving strategies and extensions of problem solving. 2. There are how much differences of achievement for each type of sentence stated problems by using comparative analysis of upper class, intermediate class, and lower class for each level between the experimental and comparative classes. In order to conduct this research the classes were divided into three different level - upper class, intermediate class and lower class. Each level include an experimental class and a comparative class. The two classes (experimental class and comparative class) of the same level were tested on the basis of class division record with the experimental class repeated learning papers for two weeks were used to guide the fixed thinking algorism for each sentence stated math problems. Eight common problems were chosen from a variety of textbooks : number calculation problems, velocity-distance-time problems, the density of a mixture, benefit problems, distribution problems, problems about working, ratio problems, the length of a figure problems. After conducting this research experiment The differences in achievement level between the experimental class and comparative class, were compared and analyzed through achievement tests made from the achievement test papers with seven problems, which were worth seventy points (total score). The conclusions of this thesis are as follows: Firstly, leaning activities through the usage of repeated learning papers for each level class produce an even development of achievement level especially in the case of the upper class learners, they have particular differences (between experimental class and comparative class) compared to the intermediate level and lower classes. Secondly, according to the analysis about achievement development each problems, learners easily accept the strategies of solution through the formula setting up to the problem of velocity -distance-time, and to the density of the mixture they adapted the picture drawing strategies interestingly, However each situation requires a variety of appropriate solution strategies. Teachers will have to employ other interesting solution strategies which relate to real life.

  • PDF

A Study on the Stimulation Transmit of PBDG (PBDG의 자격 전달에 관한 연구)

  • Kim, D.K.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1980-1982
    • /
    • 1999
  • Conductive Langmuir-Blodgett(LB) films have recently attracted much interest from the viewpoint of ultrathin film conductors at the molecular level. The result shows that the Maxwell-displacement-current (MDC) measuring technique is useful in the detection of phase-transitions over the entire range of molecule areas. In this parer, electrical properties of PBDG Langmuir(L) films were investigated using a displacement current measuring technique with pressure stimulation. Displacement current was generated When the Spread volume $150{\mu}{\ell}$ and compression velocity was about 30, 40, 50 mm/min. In the result, it is known that current is generated of higher current peek as compression velocity become faster.

  • PDF