• Title/Summary/Keyword: Velocity Estimation

Search Result 1,081, Processing Time 0.03 seconds

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

Profibus based Multirate Estimation and Control of Dual Induction motors (프로피버스 기반 복수유도전동기의 멀티레이트 추정 및 제어)

  • Lee H.H.;Kim G.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.540-543
    • /
    • 2003
  • This paper presents a method for increasing controller performance through multirate state estimation for ac machines at a low velocity. The multirate controller outputs control desired speed at each measurement Instant. The simulation results show that the performance of multirate velocity estimation and control at low velocity is improved than single rate one.

  • PDF

Optimal Optical Mouse Array for High Performance Mobile Robot Velocity Estimation (이동로봇 속도 추정 성능 향상을 위한 광 마우스의 최적 배열)

  • Kim, Sungbok;Kim, Hyunbin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.555-562
    • /
    • 2013
  • This paper presents the optimal array of optical mice for the accurate velocity estimation of a mobile robot. It is assumed that there can be some restriction on the installation of two or more optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is derived, which maps the velocity of a mobile robot to the velocities of optical mice. Second, taking into account the consistency in physical units, the uncertainty ellipsoid is obtained to represent the error characteristics of the mobile robot velocity estimation owing to noisy optical mouse measurements. Third, a simple but effective performance index is defined as the inverse of the volume of the uncertainty ellipsoid, which can be used for the optimization of the optimal optical mouse placement. Fourth, simulation results for the optimal placement of three optical mice within a given elliptical region are given.

A Study on Estimation of Doppler Frequency in a Current Velocity Measurement Radar (유속 측정 레이다에서의 도플러 주파수 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1551-1557
    • /
    • 2013
  • A current velocity measurement radar estimates Doppler frequencies to extract the corresponding surface velocity information. Therefore, it is required to maintain the high degree of reliability and accuracy of Doppler frequency estimates. However, Doppler spectra of water surface return echoes can have very widely varying shapes according to measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of conventional velocity estimating algorithm in a radar sensor. Therefore, in this paper, a newly suggested algorithm is proposed for improvement using estimation of peak Doppler frequencies. The proposed method shows that the more accurate velocity measurement can be possible comparing with the conventional one.

Precise Velocity Control at Low Speed with a Low Resolution Encoder (저 분해능 엔코더를 사용한 정밀 속도 제어)

  • Seo, Ki-Won;Kang, Hyun-Jae;Lee, Choong-Woo;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.140-142
    • /
    • 2007
  • This paper presents an effective method of precise velocity control at low speed with a low resolution encoder. Multirate observer to estimate the velocity at every DSP control period is used except a constant velocity mode. The observer corrects the estimation error when detects pulse signal. Unlike the conventional methods, the multirate estimator is stable at a low speed. However, the multirate estimator shows ripples at a constant velocity. Thus, in this paper we use a velocity prediction method which uses the present velocity from the previous average velocity to reject the ripple. In a summary, at a constant speed mode, the predicted velocity is used. Otherwise, the estimated velocity by the multirate obvserver is used. The effectiveness of the multirate observer and ripple rejection at low speed is verified through various simulations.

  • PDF

The Research of Velocity Estimation Method in Pipe Pumping for Slurry Transportation (슬러리 이송을 위한 관내 유속 추정 방법 연구)

  • Kwon, Seunghee;Jeong, Soonyong;Kim, Yuseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.21-32
    • /
    • 2014
  • This Research have suggested the new estimation method using parameter estimation algorithm to substitute established velocity and friction factor calculation equation. Established calculation equation has some difficulties for estimation and reflecting exactly flow specification cause parameter uncertainty and material uncertainty governed real phenomenon, so this research has used system modeling method for flow specification estimation and suggested estimation method.

Robust Filter Based Wind Velocity Estimation Method for Unpowered Air Vehicle Without Air Speed Sensor (대기 속도 센서가 없는 무추력 항공기의 강인 필터 기반의 바람 속도 추정 기법)

  • Park, Yong-gonjong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • In this paper, a robust filter based wind velocity estimation algorithm without an air velocity sensor in an air vehicle is presented. The wind velocity is useful information for the air vehicle to perform precise guidance and control. In general, the wind velocity can be obtained by subtracting an air velocity which is obtained by an air velocity sensor such as a pitot-tube, and a ground velocity which is obtained by a navigation equipment. However, in order to simplify the configuration of the air vehicle, the wind estimation algorithm is necessary because the wind velocity can not be directly obtained if the air velocity measurement sensor is not used. At this time, the aerodynamic coefficient of the air vehicle changes due to the turbulence, which causes the uncertainty of the system model of the filter, and the wind estimation performance deteriorates. Therefore, in this study, we propose a wind estimation method using $H{\infty}$ filter to ensure robustness against aerodynamic coefficient uncertainty, and we confirmed through simulation that the proposed method improves the performance in the uncertainty of aerodynamic coefficient.

Ground Moving Target's Velocity Estimation in SAR-GMTI (SAR-GMTI에서 지상이동표적의 속도 추정 기법)

  • Bae, Chang-Sik;Jeon, Hyeon-Mu;Yang, Dong-Hyeuk;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • A ground moving target's velocity estimation algorithm applicable for a SAR-GMTI system using 2 channel displaced phase center antenna(DPCA) is proposed. In this algorithm, we assume target's across-track velocity can be estimated by along-track interferometry (ATI) and present a method to estimate target's along-track velocity. To accomplish this method, we first transform a radar-target geometry in which a moving target has zero velocity via altering a radar velocity such that target's velocity is reflected into it and next manipulate the spectral centers of the subapertures within the synthetic aperture. The validity of the proposed algorithm is demonstrated through simulation results showing the performance of the target's velocity estimation and the enhancement of reconstructed target image quality in terms of resolution and SINR.

Vehicle Longitudinal Velocity Estimation on Inclined Road (경사진 노면에서의 차량의 종 속도 추정)

  • Lee, Sang-Yeob;Kim, In-Keun;Lee, Dong-Hun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

Coherent Pulse Train Based Velocity Estimation and Compensation for High Resolution Range Profile of Moving Target in Stepped Frequency Radar (계단 주파수 레이더에서 이동표적의 고해상도 거리 추정을 위한 코히어런트 펄스열 기반의 속도 추정 및 보상)

  • Sim, Jae-Hun;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.309-315
    • /
    • 2018
  • A Stepped Frequency Radar(SFR) is a method of achieving high range resolution by gradually increasing the frequency of a transmitted pulse to create a wide synthetic bandwidth. However, in the case of moving target, accurate range estimation can not be performed due to the range-Doppler coupling phenomenon, so it is necessary to compensate through accurate velocity estimation. In this paper, we propose a stepped frequency radar waveform with a Coherent Pulse Train(CPT), velocity estimation results according to parameters using this method and VMD(Velocity Measurement Data) were compared and analyzed by numerical simulations.