• Title/Summary/Keyword: Velocity Distribution

Search Result 2,667, Processing Time 0.027 seconds

Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 충격거동에 대한 확률분포 특성)

  • Ha, Seung-Chul;Kim, In-Gul;Lee, Seok-Je;Cho, Sang-Gyu;Jang, Moon-Ho;Choi, Ik-Hyeon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.18-22
    • /
    • 2009
  • In this paper, we examined impact force and impact behavior through low velocity impact tests of composite laminates. And through c-scan as nondestructive inspection, explored the damaged area being difficult to examine with the visual inspection. Through CAI tests, we also measured the compression strength of composite laminates subjected to low velocity impact. To examine the characteristics of impact behavior measured from low velocity impact test, nondestructive inspection, and CAI test, the simulated data are generated from the test data using Monte-Carlo simulation, then represented it by probability distribution. The testing results using visible stochastic distribution were examined and compared.

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller (회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석)

  • 이상준;백부근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

Turbulence Characteristics in a Circular Open Channel by PIV Measurements

  • Kim, Sun-Gu;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.930-937
    • /
    • 2011
  • The characteristics of mean velocity and turbulence have been analyzed in the circular open channel flow using PIV measurement data for a wide range of water depth. The measured data are fitted to a velocity distribution function over the whole depth of the open channel. Reynolds shear stress and mean velocity in wall unit are compared with the analytic models for fully-developed turbulent boundary layer. Both the mean velocity and Reynolds shear stress have different distributions from the two-dimensional boundary layer flow when the water depth increases over 50% since the influence of the side wall penetrates more deeply into the free surface. The cross-stream Reynolds normal stress also has considerably different distribution in view of its peak value and decreasing rate in the outer region whether the water depth is higher than 50% or not.

Measurement of the Velocity field of Rotor-Stator in a Centrifugal Turbine Pump by Using PIV (PIV를 이용한 터빈펌프의 동${\cdot}$정익 속도장 계측)

  • Im, Yu-Cheong;Seo, Min-Sik;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.11-18
    • /
    • 1998
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to rotor-stator region within centrifugal turbine pump. Six different kinds of rpm(120, 500, 1000, 1500, 2000 and 2500) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. Fine optical setup deeply concerned with PIV performance is arranged for accurate PIV measurement of high-speed complex flow. The instantaneous and time-mean velocity distribution and velocity profile are represented quantitatively at the rotor and stator region.

  • PDF

Measurement of the Velocity Field of Rotor-Stator in a Centrifugal Turbine Pump Using PIV (PIV를 이용한 터빈펌프의 동${\cdot}$정익 속도장 계측)

  • Im, Yu-Cheong;Seo, Min-Sik;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.35-42
    • /
    • 1999
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to rotor-stater region within centrifugal turbine pump. Six different kinds of rpm(120, 500, 1000, 1500, 2000 and 2500) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented with direct calculation of correlation coefficients. Fine optical setup concerned with PIV performance is arranged for the accurate PIV measurement of high-speed complex flow. The instantaneous and time-mean velocity distribution and velocity profile are represented quantitatively at the rotor and stator region.

  • PDF

Probability distribution and statistical moments of the maximum wind velocity

  • Schettini, Evelia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.287-302
    • /
    • 1998
  • This paper formulates a probabilistic model which is able to represent the maximum instantaneous wind velocity. Unlike the classical methods, where the randomness is circumscribed within the mean maximum component, this model relies also on the randomness of the maximum value of the turbulent fluctuation. The application of the FOSM method furnishes the first and second statistical moments in closed form. The comparison between the results herein obtained and those supplied by classical methods points out the central role of the turbulence intensity. Its importance is exalted when extending the analysis from the wind velocity to the wind pressure.

Fuel Spray Characteristics of Dimethyl Ether (DME 연료의 분무 특성에 관한 연구)

  • Lee, Sang Hoon;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • This paper describes the atomization characteristics, as well as the velocity and size distribution, of DME spray based on common-rail injection system. To analyze the possibility of using DME fuel as an alternative fuel of diesel, spray atomization characteristics were investigated. For this investigation, two-dimensional phase Doppler analyzer system was used to obtain droplet size and velocity distribution simultaneously. Velocity and droplet size measurements were performed at various injection pressures. Results showed that increasing pressure from 25MPa to 50MPa leads to higher spray droplet velocities and smaller droplet diameter but injection pressure above 40MPa, no signifiant reduction was observed. With the droplet velocity and SMD comparison between diesel and DME fuel, it can be observed that DME has smaller SMD and droplet velocity due to its low surface tension.

  • PDF

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.