• 제목/요약/키워드: Velocity Defect Vector

검색결과 3건 처리시간 0.019초

정지 및 회전하는 원주에 의한 난류후류의 응집구조 (An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).

회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구 (Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing)

  • 김윤제;전용렬
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

BDNF 유전자 이입 슈반세포와 PGA 도관을 이용한 백서 좌골신경 재생에 관한 연구 (PERIPHERAL NERVE REGENERATION USING POLYGLYCOLIC ACID CONDUIT AND BRAIN-DERIVED NEUROTROPHIC FACTOR GENE TRANSFECTED SCHWANN CELLS IN RAT SCIATIC NERVE)

  • 최원재;안강민;고은봉;신영민;김윤태;황순정;김남열;김명진;조승우;김병수;김윤희;김성민;이종호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권6호
    • /
    • pp.465-473
    • /
    • 2004
  • Purpose : The essential triad for nerve regeneration is nerve conduit, supporting cell and neurotrophic factor. In order to improve the peripheral nerve regeneration, we used polyglycolic acid(PGA) tube and brain-derived neurotrophic factor(BDNF) gene transfected Schwann cells in sciatic nerve defects of SD rat. Materials and methods : Nerve conduits were made with PGA sheet and outer surface was coated with poly(lactic-co-glycolic acid) for mechanical strength and control the resorption rate. The diameter of conduit was 1.8mm and the length was 17mm Schwann cells were harvested from dorsal root ganglion(DRG) of SD rat aged 1 day. Schwann cells were cultured on the PGA sheet to test the biocompatibility adhesion of Schwann cell. Human BDNF gene was obtained from cDNA library and amplified using PCR. BDNF gene was inserted into E1 deleted region of adenovirus shuttle vector, pAACCMVpARS. BDNF-adenovirus was multiplied in 293 cells and purified. The BDNF-Adenovirus was then infected to the cultured Schwann cells. Left sciatic nerve of SD rat (250g weighing) was exposed and 14mm defects were made. After bridging the defect with PGA conduit, culture medium(MEM), Schwann cells or BDNF-Adenovirus infected Schwann cells were injected into the lumen of conduit, respectively. 12 weeks after operation, gait analysis for sciatic function index, electrophysiology and histomorphometry was performed. Results : Cultured Schwann cells were well adhered to PGA sheet. Sciatic index of BDNF transfected group was $-53.66{\pm}13.43$ which was the best among three groups. The threshold of compound action potential was between 800 to $1000{\mu}A$ in experimental groups which is about 10 times higher than normal sciatic nerve. Conduction velocity and peak voltage of action potential of BDNF group was the highest among experimental groups. The myelin thickness and axonal density of BDNF group was significantly greater than the other groups. Conclusion : BDNF gene transfected Schwann cells could regenerate the sciatic nerve gap(14mm) of rat successfully.