• Title/Summary/Keyword: Vehicles tracing

Search Result 17, Processing Time 0.021 seconds

Noise Protection Roof: Partial Opening Effect for Noise Reduction (철도용 터널형 방음벽 개발연구: 설계 방향)

  • Kim, Tae-Min;Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.522-532
    • /
    • 2015
  • In the present study, a tunnel type soundproof wall with partial opening is proposed to reduce the environmental noise caused by railway vehicles traveling on bridges, which affects residents of high-rise apartment buildings; the study also attempts to minimize load due to wind and the weight of the wall. Applying the principles of computational fluid dynamics and structural mechanics, and the ray tracing method, a reduction in noise as well as of the overall weight of the soundproof walls is estimated. Analysis results show that the proposed soundproof wall with a partial opening weighs less, while reducing the wind loading by up to 30%. To prevent direct propagation of sound through openings in the wall, an acoustic louver, which is a type of silencer, could be considered for the opening. In order to achieve a similar noise effect with existing insulation material, the fluid flow and the insulation effect of the acoustic louver are analyzed. As the considered opening is in the range of 30~40% of the total length of the soundproof wall, the noise effect and wind load are reduced by 10dB and 25% respectively. Consequently, opening some part of tunnel type soundproof walls and installing louvers on the wall openings can have the effects of weight-reduction and reduced wind load. If a partial opening is applied with proper sound material application, a gain of an additional 5~10dB of noise reduction can be achieved.

Identity-Exchange based Privacy Preserving Mechanism in Vehicular Networks (차량 네트워크에서 신원교환을 통해 프라이버시를 보호하는 방법)

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1147-1157
    • /
    • 2014
  • Intelligent transportation system (ITS) is realized through a highly ephemeral network, i.e. vehicular ad hoc network (VANET) which is on its way towards the deployment stage, thanks to the advancements in the automobile and communication technologies. However, it has not been successful, at least to date, to install the technology in the mass of vehicles due to security and privacy challenges. Besides, the users of such technology do not want to put their privacy at stake as a result of communication with peer vehicles or with the infrastructure. Therefore serious privacy measures should be taken before bringing this technology to the roads. To date, privacy issues in ephemeral networks in general and in VANET in particular, have been dealt with through various approaches. So far, multiple pseudonymous approach is the most prominent approach. However, recently it has been found out that even multiple pseudonyms cannot protect the privacy of the user and profilation is still possible even if different pseudonym is used with every message. Therefore, another privacy-aware mechanism is essential in vehicular networks. In this paper, we propose a novel identity exchange mechanism to preserve conditional privacy of the users in VANET. Users exchange their pseudonyms with neighbors and then use neighbors' pseudonyms in their own messages. To this end, our proposed scheme conditionally preserves the privacy where the senders of the message can be revoked by the authorities in case of any dispute.

A Realistic Path Loss Model for Real-time Communication in the Urban Grid Environment for Vehicular Ad hoc Networks

  • Mostajeran, Ehsan;Noor, Rafidah Md;Anisi, Mohammad Hossein;Ahmedy, Ismail;Khan, Fawad Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4698-4716
    • /
    • 2017
  • Wireless signal transmission is influenced by environmental effects. These effects have also been challenging for Vehicular Ad hoc Network (VANET) in real-time communication. More specifically, in an urban environment, with high mobility among vehicles, a vehicle's status from the transmitter can instantly trigger from line of sight to non-line of sight, which may cause loss of real-time communication. In order to overcome this, a deterministic signal propagation model is required, which has less complexity and more feasibility of implementation. Hence, we propose a realistic path loss model which adopts ray tracing technique for VANET in a grid urban environment with less computational complexity. To evaluate the model, it is applied to a vehicular simulation scenario. The results obtained are compared with different path loss models in the same scenario based on path loss value and application layer performance analysis. The proposed path loss model provides higher loss value in dB compared to other models. Nevertheless, the performance of vehicle-vehicle communication, which is evaluated by the packet delivery ratio with different vehicle transmitter density verifies improvement in real-time vehicle-vehicle communication. In conclusion, we present a realistic path loss model that improves vehicle-vehicle wireless real-time communication in the grid urban environment.

A Model-Analysis for Removal of Fire Fumes in a Road Tunnel during a Fire Disaster (도로터널내 화재 발생시 매연 제거를 위한 모델 해석)

  • 윤성욱;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 1997
  • In case of a fire outbreak in a uni-directional road tunnel, the flow of traffic immediately behind the fire disaster will be stalled all the way back to the entrance of the tunnel. Furthermore, when the vehicle passengers try to flee away from the fire toward the entrance of the tunnel, the extremely hot fume that propagates in the same direction will be fatal to the multitudes evacuating, but may also cause damage to the ventilation equipments and the vehicles, compounding the evacuation process. This paper will present the 3-dimensional modelling analysis of the preventive measures of such a fume propagation in the same direction as the evacuating passengers. For the analysis, the fire hazard was assumed to be a perfect combustion of methane gas injected through the 1 m X 2 m nozzle in the middle of the tunnel, and the product of $CO_2$ as the indicator of the fume propagation. From the research results, when the fire hazard occurred in middle of the 400 m road tunnel, the air density decreased around the fire point, and the maximum temperatures were 996 K and 499 K at 210 m and 350 m locations, respectively, 60 seconds after fire disaster occurred, when the fumes were driven out only towards the exit-direction of the tunnel. By tracing the increase of $CO_2$ level over 1% mole fraction, the minimum longitudinal ventilation velocity was found to be 2.40 m/sec. Furthermore, through Analysis of the temperature distribution graphs, and observation of the cross-sectional distribution of $CO_2$ over 1% mole fraction, it was found that the fume did not mix with the air, but rather moved far in a laminar flow towards exit of the tunnel.

  • PDF

Utilizing Spatial and Temporal Information in KAHIS for Aiding Animal Disease Control Activities (가축질병 방역활동 지원을 위한 국가동물방역통합시스템 시공간 정보 활용)

  • PARK, Son-Il;PARK, Hong-Sik;JEONG, Woo-Seog;LEE, Gyoung-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.186-198
    • /
    • 2016
  • HPAI(Highly Pathogenic Avian Influenza) is a contagious animal disease that spreads rapidly by diffusion after the first occurrence. The disease has brought tremendous social costs and economic losses. KAHIS (Korea Animal Health Information System) is the integrated system for supporting the task of preventing epidemics. They provide decision-support information, recording vehicle visiting times and facility location, etc., which is possible by enforcing registration of all livestock related facilities and vehicles. KAHIS has accumulated spatial and temporal information that enables effective tracing of potential disease trajectories and diffusion through vehicle movements. The contact network is created utilizing spatial and temporal information in KAHIS to inform facility connection via vehicle visitation. Based on the contact network, it is possible to infer spatial and temporal mechanism of disease spread and diffusion. The study objective is to empirically demonstrate how to utilize primary spatial and temporal information in KAHIS in the form of the contact network. Based on the contact network, facilities with the possibility of infection can be pinpointed within the potential spatial and temporal extent where the disease has spread and diffused. This aids the decision-making process in the task of preventing epidemics. By interpreting our demonstration results, policy implications were presented. Finally, some suggestions were made to comprehensively utilize the contact network to draw enhanced decision-support information.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Ubiquitous Sensor Network Application Strategy of Security Companies (시큐리티업체의 유비쿼터스 센서네트워크(USN) 응용전략)

  • Jang, Ye-Jin;An, Byeong-Su;Ju, Choul-Hyun
    • Korean Security Journal
    • /
    • no.21
    • /
    • pp.75-94
    • /
    • 2009
  • Since mechanical security systems are mostly composed of electronic, information and communication devices, they have effects in the aspects of overall social environment and crime-oriented environment. Also, the importance is increasing for wireless recognition of RFID and tracing function, which will be usefully utilized in controlling the incomings and outgoings of people/vehicles or allowance, surveillance and control. This is resulting from the increase in the care for the elderly according to the overall social environment, namely, the aging society, and the number of women entering, as well as the increase in the number of heinous crimes. The purpose of this study is to examine the theoretical considerations on ubiquitous sensor network and present a direction for securities companies for their development by focusing on the technological and application areas. To present strategies of response to a new environment for security companies, First, a diversification strategy is needed for security companies. The survival of only high level of security companies in accordance with the principle of liberal market competition will bring forth qualitative growth and competitiveness of security market. Second, active promotion by security companies is needed. It is no exaggeration to say that we are living in the modern society in the sea of advertisements and propaganda. The promotional activities that emphasize the areas of activity or importance of security need to be actively carried out using the mass media to change the aware of people regarding security companies, and they need to come up with a plan to simultaneously carry out the promotional activities that emphasize the public aspect of security by well utilizing the recent trend that the activities of security agents are being used as a topic in movies or TV dramas. Third, technically complementary establishment of ubiquitous sensor network and electronic tag is needed. Since they are used in mobile electronic tag services such as U-Home and U-Health Care, they are used throughout our lives by forming electronic tag environment within safe ubiquitous sensor network based on the existing privacy guideline for the support of mobile electronic tag terminal commercialization, reduction in communication and information usage costs, continuous technical development and strengthening of privacy protection, and the system of cooperation of academic-industrial-research needs to be established among the academic world and private research institutes for these parts.

  • PDF