• 제목/요약/키워드: Vehicle-to-MR Communications

검색결과 3건 처리시간 0.015초

버스 정류소 주변에서 자동차-이동기지국 (V2MR) 통신의 연결시간에 대한 성능분석모형 (Model for the Connection-Time of Vehicle-to-Mobile RSU (V2MR) Communications Near a Bus Station)

  • 정한유;막달레나 트리 푸르나닝타스;응웬 호아 흥
    • 한국통신학회논문지
    • /
    • 제41권12호
    • /
    • pp.1969-1977
    • /
    • 2016
  • 자동차 통신망의 구축비용을 획기적으로 절감하기 위해 자동차 통신망과 이동통신망을 연결하는 기지국을 대중교통수단인 버스에 설치한 자동차-이동기지국 (Vehicle-to-Mobile Roadside Unit, V2MR) 통신에 대해 연구한다. 자동차-이동기지국 통신에서 자동차들은 이동기지국에 애드 혹 연결을 설정하여 연결성을 크게 향상한다. 본 논문에서는 동일한 경로를 주행하는 자동차들과 이동기지국 간의 통신연결 시간에 대한 새로운 분석모형을 제시한다. 자동차 통신망에서 연결시간은 매우 동적이고 예측하기 힘들기 때문에, 본 논문에서 제안하는 분석모형은 자동차-이동기지국 간의 통신연결 시간을 예측하기 위한 토대를 제공할 수 있다. VEINS 시뮬에이션을 통해 수집한 실험결과를 통해 제안하는 성능분석모형이 V2MR 통신연결시간 추정 오차를 약 1 퍼센트 이내로 줄일 수 있음을 보인다. 또한, V2MR 통신이 V2R 통신에 비해 통신연결 시간을 약 3.85배 증가시킬 수 있음을 보인다.

네트워크 이동성을 위한 자원 관리 구조의 설계와 분석 (Design and Analysis of Resource Management Architecture for Network Mobility)

  • 백은경;조호식;최양희
    • 한국통신학회논문지
    • /
    • 제29권7B호
    • /
    • pp.628-640
    • /
    • 2004
  • 이동 네트워크는 네트워크 단위로 이동하는 구조로서, 이동 라우터에 연결된 이동 노드들의 이동을 통합하여 관리한다. 이동 네트워크 내의 노드들은 이동 라우터를 통하여 인터넷과 무선 연결되며, 모든 통신이 이동 라우터를 거쳐서 이루어지므로, 이동 라우터에서의 대역폭 관리 및 신뢰성 제공이 중요하다. 또한 이동 네트워크는 이동한다는 본질적 특성에 의하여 내부의 모든 노드들에 대한 위치 관리 및 이에 따른 전력 소비 관리를 필요로 한다. 본 논문에서는 자동차나 기차와 같은 운송체에 구성되는 이동 네트워크에서의 전력 및 대역폭 자원을 효율적으로 관리하기 위한 기법을 제안한다. 제안하는 기법은 이동 네트워크가 구성되는 운송체와 승객의 이동 특성을 이용하여, 불필요한 위치 관리 신호를 생략함으로써 전력을 절약한다. 또한 다중 이동 라우터를 이용한 멀티호밍기법에 의하여 대역폭 자원을 관리한다. 제안한 전력 관리 기법을 수학적으로 분석한 결과는 정지 상태의 이동기기 뿐 아니라 활성 상태의 이동 기기 전력도 현저하게 절약할 수 있음을 보인다. 제안한 다중 이동 라우터 선택 기법에 대한 시뮬레이션 결과는, 이 기법이 기존의 단순 라우터 중복 구조에 비하여 무선 대역폭 자원을 효율적으로 활용함을 보여준다.

자기신호분석을 통한 차량의 감지센서와 자기형상에 관한 연구 (Magnetic Signals Analysis for Vehicle Detection Sensor and Magnetic Field Shape)

  • 최학윤
    • 한국통신학회논문지
    • /
    • 제40권2호
    • /
    • pp.349-354
    • /
    • 2015
  • 본 논문은 차량감지를 위해 자기센서를 이용하여 자기신호를 측정하고 형상을 분석한 결과에 관한 것이다. 자기센서는 하니웰사의 MR센서를 이용하였고, 센서의 성능을 알아보기 위해 3축의 길이가 1.2 m인 자기장 발생장치를 제작하여 자기장 감지능력을 측정하였다. 차량감지는 주행차로와 비 주행차로에 센서를 설치한 후 감지여부와 차체의 크기가 다른 7개 차량에 대해서 자기장을 측정하였다. 또한 SUV와 소형 차량의 주차구역과 비 주차구역에 센서를 설치하고 자기장 형상을 분석하였다. 마지막으로 차량의 각 부분별 자기장 형상을 측정하였다. 측정 결과 주행차로에 자기장 형상은 비 주행차로의 경우보다 자기장 첨두치가 크며 복잡한 형상을 보여 센서의 설치 위치로 주행차로와 주행차의 방향을 구분할 수 있었으며, 차체가 클수록 자기장의 변화가 커서 차량 종류를 식별할 수 있었다. 또한 차량의 각 부분별 자기장의 변화를 측정하여 형상을 분석하였다.