• Title/Summary/Keyword: Vehicle-bridge interaction analysis

Search Result 96, Processing Time 0.021 seconds

Analysis of high-speed vehicle-bridge interactions by a simplified 3-D model

  • Song, Myung-Kwan;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.505-532
    • /
    • 2002
  • In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-dimensional finite element model is performed. Since railroads are constructed mostly as double tracks, there exists eccentricity between the vehicle axle and the neutral axis of cross section of a railway bridge. Therefore, for the more efficient and accurate vehicle-bridge interaction analysis, the analysis model should include the eccentricity of axle loads and the effect of torsional forces acting on the bridge. The investigation into the influences of eccentricity of the vehicle axle loads and vehicle speed on vehicle-bridge interactions are carried out for two cases. In the first case, only one train moves on its track and in the other case, two trains move respectively on their tracks in the opposite direction. From the analysis results of an existing bridge, the efficiency and capability of the simplified 3-dimensional model for practical application can be also verified.

Dynamic interaction analysis between actively controlled Maglev and bridge (능동제어되는 자기부상열차와 교량의 동적상호작용해석)

  • Lee, Jun-Seok;Kwon, Soon-Duck;Yu, In-Ho;Kim, Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.555-560
    • /
    • 2008
  • Dynamic interaction analysis between actively controlled Maglev and bridge is carried out. For this, dynamic governing equation for 2-dof Maglev vehicle and optimal feedback control scheme of DOFC are developed. And then the dynamic effect of the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge to the both of air-gap variations of UTM-01 maglev vehicle and bridge center maximum displacement response are investigated. From the results of numerical simulation, it is found that the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge does not affect greatly within design velocity of the vehicle.

  • PDF

Variation of modal parameters of bridges due to vehicle-bridge interaction (차량-교량 상호작용에 의한 교량 모달 특성의 변화)

  • 권순덕;김철영;장승필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.420-423
    • /
    • 2003
  • This paper addresses the results of experimental and analytical study on the effects of dynamic interaction between vehicle and bridge on modal properties of bridge. Based on ambient vibration test and vehicle impact test on a bridge, it is found that the natural frequencies of bridge are varied by vehicle passing. Analytical studies for the effects of vehicle position, speed, damping, mass ratio and frequency ratio on bridge-vehicle interaction are carried out using complex eigenvalue analysis and numerical integration in time domain. The results show that vehicle properties except speed cause significant change of natural frequency as well as damping of bridge.

  • PDF

Dynamic Behavior of Railway Bridge Due to Trains Moving on Double Tracks (복선선로를 통과하는 열차에 의한 철도교량의 동적거동)

  • 최창근;송명관;양신추
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.450-457
    • /
    • 1999
  • In this study, the simplified method for 3-dimensional vehicle-bridge interaction analysis is utilized in the analysis of dynamic behavior of bridges in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate vehicle-bridge interaction analysis. Investigations mainly into the influence of vehicle speed on vehicle-bridge interactions are carried out for case that two trains move respectively on their tracks in the opposite direction.

  • PDF

Dynamic interaction analysis of vehicle-bridge system using transfer matrix method

  • Xiang, Tianyu;Zhao, Renda
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.111-121
    • /
    • 2005
  • The dynamic interaction of vehicle-bridge is studied by using transfer matrix method in this paper. The vehicle model is simplified as a spring-damping-mass system. By adopting the idea of Newmark-${\beta}$ method, the partial differential equation of structure vibration is transformed into a differential equation irrelevant to time. Then, this differential equation is solved by transfer matrix method. The prospective application of this method in real engineering is finally demonstrated by several examples.

A drive-by inspection system via vehicle moving force identification

  • OBrien, E.J.;McGetrick, P.J.;Gonzalez, A.
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.821-848
    • /
    • 2014
  • This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.

Theoretical formulation for vehicle-bridge interaction analysis based on perturbation method

  • Tan, Yongchao;Cao, Liang;Li, Jiang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.191-204
    • /
    • 2022
  • A three-mass vehicle model including one rigid mass and two unsprung masses is adopted to predict the vehicle-bridge interaction (VBI) and to establish the nonlinear coupled governing equations. To overcome the numerical instability and large computation problems concerning the vehicle-bridge system, the perturbation method is used to convert the nonlinear coupled governing equations into a set of linear uncoupled equations. Formulas for bridge's natural frequencies considering both the VBI and the dynamic responses of bridge and vehicle are proposed. Compared with the numerical results obtained by the Newmark-β method, the theoretical solutions for natural frequencies and dynamic responses are validated. The effects of the important factors of unsprung mass, vehicle damping, surface irregularity on the natural frequencies and dynamic responses of bridge and vehicle are discussed, based on the theoretical solutions.

Development of Dynamic Analysis Program Considering Vehicle-Bridge interaction (차량-교량 상호작용을 고려한 동적해석 프로그램 개발)

  • Cho Eun-Sang;Koo Hyoung-Woo;Hwang Won-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.505-509
    • /
    • 2005
  • Analysis program to estimate the dynamic characteristics of bridge is investigated by using three-dimensional analytical model considering vehicle-bridge interaction. A dynamic interaction models of the vehicle-bridge system are established, which is composed of a vehicle element model and a finite element bridge model. The vehicle models are established according to the structure and suspending properties of vehicle. The dynamic responses of the bridge are calculated. But the computer simulation program is being verified with field tests results, it must be corrected according to them.

  • PDF

Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction

  • Erdogan, Yildirim S.;Catbas, Necati F.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The vehicle-bridge interaction (VBI) analysis might be cumbersome and computationally expensive in bridge engineering due to the necessity of solving large number of coupled system of equations. However, VBI analysis can provide valuable insights into the dynamic behavior of highway bridges under specific loading conditions. Hence, this paper presents a numerical study on the dynamic behavior of a conventional highway bridge under strong near-field and far-field earthquake motions considering the VBI effects. A recursive substructuring method, which enables solving bridge and vehicle equations of motion separately and suitable to be adapted to general purpose finite element softwares, was used. A thorough analysis that provides valuable information about the effect of various traffic conditions, vehicle velocity, road roughness and effect of soil conditions under far-field and near-field strong earthquake motions has been presented. A real-life concrete highway bridge was chosen for numerical demonstrations. In addition, sprung mass models of vehicles consist of conventional truck and car models were created using physical and dynamic properties adopted from literature. Various scenarios, of which the results may help to highlight the different aspects of the dynamic response of concrete highway bridges under strong earthquakes, have been considered.

Finite element analysis of vehicle-bridge interaction by an iterative method

  • Jo, Ji-Seong;Jung, Hyung-Jo;Kim, Hongjin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.165-176
    • /
    • 2008
  • In this paper, a new iterative method for solving vehicle-bridge interaction problems is proposed. Iterative methods have advantages over the non-iterative methods in that it is not necessary to update the system matrix for a given wheel location, and the method can be applied for a new type of car or bridge with few or no modifications. In the proposed method, the necessity of system matrices update is eliminated using the equivalent interaction force acting on the bridge, which is obtained iteratively. Ballast stiffness is included in the interaction forces and the geometric compatibility at the contact points are used as convergence criteria. The bridge is considered as an elastic Bernoulli-Euler beam with surface irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle mass-spring-damper system having many degrees of freedom depending on the number of axles. The pitching effect, which is the interaction effect between the rear and front wheels when a vehicle begins to enter or leave the bridge, is also considered in the formulation including extended ground boundaries having surface irregularity and ballast stiffness. The applicability of the proposed method is illustrated in the numerical studies.