• 제목/요약/키워드: Vehicle-IT

검색결과 8,148건 처리시간 0.034초

Study on Vehicle Infra System of Bimodal Tram (바이모달트램 차량인프라시스템에 관한 연구)

  • Lee, Kang-Won;Yoon, Hee-Taek;Park, Young-Kon;Hwang, Eui-Kyeong
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2147-2152
    • /
    • 2011
  • This study of bimodal integration management system in conjunction with the tram and the tram cars bimodal integrated management system that occupies a part of the system to perform its role as a bimodal tram vehicle configuration, a device for the vehicle's infrastructure ryureul development and it is aimed to build on the vehicle. Bimodal tram vehicle infrastructure systems, internal and external information of the larger vehicles, and vehicles used to collect information for its own part and the integrated operations management center, or providing partial information from the station and collect/provide for the transfer of information to the communication part consists In this study, the core of these devices, the configuration of the vehicle infrastructure systems for the overall management and control of vehicles operating a computer's central processing device, vehicle infrastructure systems that make it manages and stores all jangchiryu Integrated Operations Management Center is reporting. In addition, seamless integration with operational management center for interactive communication in a vehicle mounted communications devices to maintain the best condition to manage. Current general traffic management system in a similar terminal device being used, but bimodal tram vehicles operating the computer of the vehicle operates the infrastructure to configure the devices around the one to configure the system in terms of step enhanced the active type, the operating terminal unit of inter active type. In this study, considering the future alignment of the accounting fee system, the expansion of the system reliability and stability around the activities that are underway.

  • PDF

Driver Adaptive Control Algorithm for Intelligent Vehicle (운전자 주행 특성 파라미터를 고려한 지능화 차량의 적응 제어)

  • Min, Suk-Ki;Yi, Kyong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제27권7호
    • /
    • pp.1146-1151
    • /
    • 2003
  • In this paper, results of an analysis of driving behavior characteristics and a driver-adaptive control algorithm for adaptive cruise control systems have been described. The analysis has been performed based on real-world driving data. The vehicle longitudinal control algorithm developed in our previous research has been extended based on the analysis to incorporate the driving characteristics of the human drivers into the control algorithm and to achieve natural vehicle behavior of the adaptive cruise controlled vehicle that would feel comfortable to the human driver. A driving characteristic parameters estimation algorithm has been developed. The driving characteristics parameters of a human driver have been estimated during manual driving using the recursive least-square algorithm and then the estimated ones have been used in the controller adaptation. The vehicle following characteristics of the adaptive cruise control vehicles with and without the driving behavior parameter estimation algorithm have been compared to those of the manual driving. It has been shown that the vehicle following behavior of the controlled vehicle with the adaptive control algorithm is quite close to that of the human controlled vehicles. Therefore, it can be expected that the more natural and more comfortable vehicle behavior would be achieved by the use of the driver adaptive cruise control algorithm.

A Study of the Measurement of Driver's Cognitive Map on Instrument Panel (운전자의 Instrument Panel에 대한 인지지도 측정에 관한 연구)

  • Yu, Seung-Dong;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • 제18권2호
    • /
    • pp.35-45
    • /
    • 1999
  • Driver centered vehicle design is the important factor for driver's safety, product quality, and so on. Therefore, people has recently recognized the importance of driver centered vehicle design. Especially, in the focus of driver-vehicle interaction system, it is very important factor to ergonomic design of vehicle cockpit. In this study, Sketch Map method was used to measure of driver's cognitive map on IP(Instrument Panel) that is the basic factor to ergonomic design for vehicle cockpit. The compatibility of Sketch Map method was validated for the measurement of driver's cognitive map and then the accuracy between two groups was analyzed using Sketch Map method. Subjects were divided in two groups, the first group of subjects has their own vehicles and driver license, and the second group of subjects doesn't have own vehicle but has driver license. The result showed that for the case of the first group, the shape of IP in the cognitive map was influenced by IP of their each vehicle. However, for the case of the second group, it showed the difference between IP in the cognitive map and IP of experienced vehicle many times because they have been driving various type of vehicle. So, the shape of IP in the cognitive map was influenced by various type of IP.

  • PDF

Validation of a Vehicle Model and an ABS Controller with a Commercial Software Program (상용 소프트웨어를 이용한 차량 모델 및 ABS 제어기의 성능 평가)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제15권5호
    • /
    • pp.180-187
    • /
    • 2007
  • This paper presents a mathematical vehicle model that is designed to analyze the dynamic performance and to develop various safety control systems. Wheel slip controllers for ABS is also formulated to improve the vehicle response and to increase the safety on slippery road. Validation of the model and controller is performed by comparison with a commercial software package, CarSim. The result shows that performances of developed vehicle model are in good accordance with those of the CarSim on various driving conditions. Developed ABS controller is applied to the vehicle model and CarSim model, and it achieves good control performance. ABS controller improves lateral stability as well as longitudinal one when a vehicle is in turning maneuver on slippery road. A driver model is also designed to control steer angle of the vehicle model. It also shows good performance because the vehicle tracks the desired lane very well.

Plastic mechanism analysis of vehicle roof frames consisting of spot-welded steel hat sections

  • Bambach, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1085-1098
    • /
    • 2014
  • Plastic mechanism analysis of structures subjected to large deformation has long been used in order to determine collapse mechanisms of steel structures, and the energy absorbed in plastic deformation during such collapses. In this paper the technique is applied to vehicle roof structures that undergo large plastic deformation as a result of rollover crashes. The components of such roof structures are typically steel spot-welded hat-type sections. Ten different deformation mechanisms are defined from investigations of real-world rollover crashes, and an analytical technique to determine the plastic collapse load and energy absorption of such mechanisms is determined. The procedure is presented in a generic manner, such that it may be applied to any vehicle structure undergoing a rollover induced collapse. The procedure is applied to an exemplar vehicle, in order to demonstrate its application in determining the energy absorbed in the deformation of the identified collapse mechanisms. The procedure will be useful to forensic crash reconstructionists, in order to accurately determine the initial travel velocity of a vehicle that has undergone a rollover and for which the post-crash vehicle deformation is known. It may also be used to perform analytical studies of the collapse resistance of vehicle roof structures for optimisation purposes, which is also demonstrated with an analysis of the effect of varying the geometric and material properties of the roof structure components of the exemplar vehicle.

A Study on Low-Overhead Collision Warning Scheme using Vehicle-to-Vehicle Communications (차량 간 통신을 이용한 저비용 사고 위험 방지 기술에 관한 연구)

  • Lee, Ji-Hoon;Kim, Dae-Youb
    • Journal of Korea Multimedia Society
    • /
    • 제15권10호
    • /
    • pp.1221-1227
    • /
    • 2012
  • It is expected that the vehicle safety systems using vehicle-to-vehicle communication can reduce the possibility of vehicle collision and prevent the chain crash by promptly delivering the status of neighboring vehicles. Many IEEE 802.11 DCF based Flooding schemes have been proposed, but they may generally expose the problems that the transmission efficiency is sharply declined as the vehicle density has increased and then is related to the low possibility of the channel access. Therefore, this paper proposes a collision prevention scheme using adaptively controlling the frequency of the message exchanges based on the current status of neighboring vehicles. Moreover, it is shown from simulation that the proposed scheme provides the performance gains over the existing Flooding based scheme.

Improvement of Washout Algorithm for Vehicle Driving Simulator Using Vehicle Tilt Data and Its Evaluation (차량 기울기값을 이용한 차량 시a레이터용 워시아웃 알고리즘에 대한 개선 및 평가)

  • Moon, Young-Geun;Kim, Moon-Sik;Kim, Kyung-Dal;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제15권8호
    • /
    • pp.823-830
    • /
    • 2009
  • For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.

Evaluation System for Forward Vehicle Collision Warning System (전방차량충돌경고장치(FVCWS) 평가 시스템)

  • Yong, Boo-Joong;Park, Yo-Han;Yoon, Kyong-Han;Hwang, Duk-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제15권3호
    • /
    • pp.85-90
    • /
    • 2007
  • The main function of the Forward Vehicle Collision Warning System (FVCWS) is to warn a driver when he or she experiences dangerous situations caused by a forward vehicle. Warning distance algorithms under same dangerous circumstances are often various depending on automobile manufacturers and component suppliers. Human factors also should be considered to warn the driver at an adequate warning distance. Therefore, it is necessary to develop a system for evaluating the pertinent warning timing in an identically dangerous situation. The system consists of sensors for measuring speed and acceleration of subject vehicle and target vehicle, controllers to follow the velocity profile properly, and wireless telecommunication equipments for receiving or transmitting the measured data in a real-time. According to actual field tests, it is shown that the developed system is suitable to evaluate warning distance of FVCWS.

An Adaptive Learning Controller for Underwater Vehicle with Thruster Dynamics (추진기의 영향을 고려한 무인잠수정의 적응학습제어)

  • 이원창
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제33권4호
    • /
    • pp.290-297
    • /
    • 1997
  • Underwater robotic vehicles(URVs) are used for various work assignments such as pipe-lining, inspection, data collection, drill support, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc. As the use of such vehicles increases the development of vehicles having greater autonomy becomes highly desirable. The vehicle control system is one of the most critic vehicle subsystems to increase autonomy of the vehicle. The vehicle dynamics is nonlinear and time-varying. Hydrodynamic coefficients are often difficult to accurately estimate. It was also observed by experiments that the effect of electrically powered thruster dynamics on the vehicle become significant at low speed or stationkeeping. The conventional linear controller with fixed gains based on the simplified vehicle dynamics, such as PID, may not be able to handle these properties and result in poor performance. Therefore, it is desirable to have a control system with the capability of learning and adapting to the changes in the vehicle dynamics and operating parameters and providing desired performance. This paper presents an adaptive and learning control system which estimates a new set of parameters defined as combinations of unknown bounded constants of system parameter matrices, rather than system parameters. The control system is described with the proof of stability and the effect of unmodeled thruster dynamics on a single thruster vehicle system is also investigated.

  • PDF

A implement of vehicle Blackbox system with OBD and MOST network (OBD와 MOST 네트워크를 이용한 차량용 블랙박스 시스템 설계)

  • Baek, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.66-69
    • /
    • 2010
  • Lately, vehicle combined vehicle and IT(Information Technology) for vehicle's safety and convenience. so, vehicles is equipped with many ECU(Electronic control unit). the ECU's transmit data about each electronic control unit with OBD(On-Board Diagnostics) Network and data about each multimedia with MOST(Media Oriented System Transport) Network. In this paper, Supplementing disadvantage of existing blackbox, Using MOST of in-vehicle multimedia network and OBD-II of in-vehicle control network, blackbox system obtain the vehicle's driving state data. so, blackbox system judge vehicle's driving state and provide vehicle's driving state information to driver. Blackbox system implement the features mentioned above. as a result, blackbox is going to be more accurate blackbox system.

  • PDF