• 제목/요약/키워드: Vehicle suspension system

검색결과 454건 처리시간 0.023초

차량의 모델링과 엔진마운트 최적설계값의 적용 (The Modelling of vehicle and Applying the Optimal Design Values of Engine Rubber Mounts)

  • 박철희;오진우
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.129-143
    • /
    • 1998
  • The vibrations of steering wheel are required to be reduced for convenient ride quality and good controllability. This phenomenon, vibration of steering wheel, is occured by interaction with suspension system, steering system, vehicle body, engine/transmission and tire complicately. But reviewing the current research activities, most researches are performed for the vibration analysis of steering wheel with a simple model, and mot easy to be applied to the variation of each component element connected with steering system as well as that of the steering system. In this study, suspension system and steering system are modelled by the T.L.H. coordinate system which is usually used by a passenger car maker. Also, rigid body motions of engine and elastic motions of vehicle body in the previous study are considered. Derive the equation of motion in 29 d.o.f. and the vibration of steering wheel is analyzed numerically and verify the midelling of steering system by comparison with test results for real car. And then, the optimal design values of the engine mount system obtained from the previous study are applied to the verified steering system model and investigate the effects of various engine mount design values on the vibration of steering wheel.

  • PDF

Testing and experimental characterization of a linear permanent magnet actuator for active vehicle suspension

  • Wang, Jiabin;Wang, Weiya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.509-516
    • /
    • 2012
  • This paper describes the testing and experimental characterization of a linear permanent magnet actuator, which is designed and developed for active vehicle suspension, under both static and dynamic conditions. Since the active suspension unit operates over a wide force-velocity range with varying duty ratios, it is essential to establish an effective thermal model which can be used for assessing temperature rise of the actuator under various operating conditions. The temperature rise of the actuator is measured and the results are compared with the prediction by the derived transient thermal model. It is shown that the measured actuator parameters and characteristics are closed to their predicted values. The linear actuator is controlled by a dSPACE system via a three phase inverter and its velocity tracking performance is presented.

ER댐퍼를 이용한 차량의 진동제어 (Vibration Control of a Vehicle using ER Damper)

  • 주동우;이육형;박명관
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

The Design of the Feedback Control System of Electromagnetic Suspension Using Kalman Filter

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.93-96
    • /
    • 2011
  • The basic element of the EMS suspension is the electromagnet system, which suspends the vehicle without contact by attracting forces to the rails at the guideway. The suspension of a vehicle by attractive magnetic forces is inherently unstable and consequently it is continuously adjusted by the strength of the suspending electromagnet from rail irregularity and bending of the guideway. In order to improve reliable tracking, it needs to get feedback signals without measurement delay time. In this paper the concept of feedback control system with Kalman Filter in EMS is proposed. The input signals in the feedback control system are an air-gap and an acceleration signal. The air-gap signal with noise from the gap sensor is transformed to the filtered air-gap signal y without measurement delay time by using Kalman Filter. The filtered air-gap signal is transformed to a relative velocity and a relative acceleration signal. Then it multiplies these values by gain matrix in order to get the actuator's reference voltage value. The simulation results show that the dynamic responses of the suspension system can be improved by reducing the influence of measurement delay time of air-gap signals.

  • PDF

현가장치 설계시 주행성능 인자들에 대한 고찰 (A Study for the Parameters of Handling Performance in the Design of Suspension System)

  • 이형복;조규종
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.121-132
    • /
    • 1996
  • As a new suspension is being designed, the designer should consider that the vehicle has a good ride and handling performance. It is not easy for a yound desigineer to decide the design parameters. In this study, the design process of a suspension system is described. the method of optimized design to achieve the target of vehicle performance from the initial layout to detailed design stage is also described. As a result, the effects of design parameters in the vehicle dynamic performance are mentioned by the synthesized program

  • PDF

자동차 공기현가 공압회로 해석 및 대체회로 설계 (Analysis and Alternative Circuit Design of Pneumatic Circuit for An Automotive Air Suspension)

  • 이재천
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.17-25
    • /
    • 2008
  • This study presents an analytical model of the pneumatic circuit of an air suspension system to analyze the characteristics of vehicle height control. The analytical model was developed through the co-simulation of Simulink(air spring) and HyPneu(pneumatic circuit). Variant effective area of air spring and flow coefficients of pneumatic valves were estimated experimentally prior to the system test, and utilized in simulation. One-comer test apparatus was established using the components of commercial air suspension products. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the frictional loss of conduit and heat dissipation which were ignored in this study need to be considered in future study. As an application example of proposed analytical model, an alternative pneumatic circuit of air suspension to conventional WABCO circuit was evaluated. The comparison of simulation results of WABCO circuit and alternative circuit show that proposed analytical model of co-simulation in this study is useful for the study of pneumatic system of automotive air suspension.

  • PDF

여객차량 현가장치의 강성비 변화에 의한 진동 실험 (Expriment of the Vertical Vibration for Effect of the Parameter of Stiffness Ratio of the Small Scale Passenger Vehicle)

  • 최경진;장동욱;권영필;김완두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1110-1115
    • /
    • 2002
  • The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type passenger vehicle. According to the results of simulation and the small scale vehicle test. Optimal condition was obtained for the stiffness ratio of the primary spring and secondary spring of the suspension system. When the stiffness ratio was Increased, the vortical vibration was increased on the car body for empty and weight car. The result of this study are stable to use of the optimum parameter of the ride duality of KT-23 type vehicle. Also, it is usefull to development of full scale vehicle dynamomer

  • PDF

외란 형상 정보를 활용한 진동제어 (Vibration Control of Vehicle using Road Profile Information)

  • 김효준
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.431-437
    • /
    • 2017
  • 본 연구에서는 주행 노면의 형상을 재현하는 알고리즘을 기반으로, 외란 형상 정보를 활용한 차량의 진동제어 시스템과 그 결과를 제시하였다. 시스템에 전달되는 외란으로 유발되는 과도한 진동 및 그 영향을 저감시키고 안정성을 확보하는 것은 중요한 이슈이며, 특히 자동차 분야에서는 그 요구가 지속적으로 제기되고 있다. 차량의 진동과 불안정성을 유발하는 대표적인 외란 요인은 주행하는 차량 타이어에 접촉하는 불규칙한 도로면 형상이다. 따라서 이러한 외란 형상 정보를 확보하는 것은 매우 중요한 과정이다. 본 연구에서는 차체에 부착된 센서로부터 측정된 신호에 혼입된 차량의 동적 거동 영향을 배제하고 관심 도로면의 형상 정보를 재현할 수 있는 RPS 알고리즘과 이를 적용한 실험결과를 제시하였다. 이를 토대로, 예견제어 이론을 응용한 전자 제어 현가 시스템과 7 자유도 전차량 모델에 적용하여 시뮬레이션을 수행하였다. 그 결과 반능동형 작동기와 결합된 지능형 제어 시스템을 통하여 자동차의 주요 성능 지수인 승차감과 조종안정성의 개선 효과를 확인하였으며, 제안한 제어 프레임의 효용성을 제시하였다.

공기 현가 장치를 장착한 트랙터-트레일러형 차량 시스템의 충격진동 해석 (Shock and vibration analysis of a tractor-trailer type vehicle system with air suspension)

  • 김종길;하태완
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.15-22
    • /
    • 2000
  • Shock and vibration characteristics of a tractor-trailer type vehicle system with air suspension and air coupler running on a single bump road are investigated. The vehicle system is modelled and solved to two types of models, i.e. rigid-multi-body and flexible-multi-body model, by ADAMS and NASTRAN software. And the shock impulse is given by a single bump model on the road. When the analysis results of the rigid-multi-body model is compared with those of the flexible-multi-body model, it is revealed that the vibration and accelerations of the latter model are more repetitive and larger than the former.

  • PDF

현가장치의 성능향상을 위한 지능형 제어로직에 관한 연구 (A Study on the Knowledge Based Control Algorithm for Performance Improvement of the Automotive Suspension System)

  • 소상균;변기식
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.87-92
    • /
    • 2001
  • Automotive suspension system is a mechanism for isolation of the vibration coming from the road inputs. Recently, the electronically controlled suspension systems which may improve ride and handling performance have been developed. Here, the continuously controlled semi-active suspension system is focused. As a mechanism to control damping forces continuously, a solenoid valve is used. The modeling for the solenoid valve is introduced briefly, a vehicle dynamics modeling is constructed, and then combined system model is completed. To design the efficient control algorithm for the semiactive suspension system the knowledge based fuzzy logic is applied and the technique how to apply the sky-hook theory to the fuzzy logic is developed. Finally, to confirm the improvement of performance the computer simulation is carried out.

  • PDF