• Title/Summary/Keyword: Vehicle speed profile

Search Result 95, Processing Time 0.019 seconds

An Analysis of Velocity Patterns and Improvement Effect after Application of Domestic Roundabout Design Guidelines (Focusing on Busan Metropolitan City) (국내 회전교차로 설계지침 적용에 따른 속도패턴과 개선효과 분석 - 부산광역시를 중심으로 -)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.305-316
    • /
    • 2013
  • To find out if modern roundabout is still effective under drivers behavior and driving conditions in Busan Metropolitan City, the effects before and after introduction of roundabout were analyzed. According to analysis on velocity profile at roundabout, velocity deviation decreased, and average vehicle speed was close to design speed. As a result, it has been confirmed that most roundabouts were properly built. In terms of traffic operation, average vehicle speed improved by 87.2% when a traffic intersection was replaced by a roundabout. therefore, it has been found out that the introduction of roundabout has a positive effect on increasing vehicle speed by reducing traffic congestion. In addition, annual benefits expected from the replacement from a traffic intersection to a roundabout were KRW 872 million as follows; KRW 410 million in traffic communication, KRW 39 million in transportation safety, KRW 255 million in energy saving, KRW 95 million in reduction of air pollution and KRW 73 million in reduction of traffic signal installation cost. In other words, if 10% (193 spots) of all traffic intersections (1,926 spots in total) in Busan City are replaced by roundabouts, the municipal authority would be able to save about KRW 168.3 billion. According to analysis on the benefits expected from the installation of roundabouts compared to the investment cost for traffic intersections, about KRW 679 million could be saved per roundabout. Considering 10% of all traffic intersections in the City of Busan, about KRW 131 billion could be saved annually. The traffic accidents in roundabout usually occur because drivers aren't aware of right-of-way rules. Once the right-of-way rules settle, the number of traffic accidents would significantly decrease. In addition, it is urgent to promote education and campaign for drivers, pedestrians and bikers on the roundabout.

Development of a Fuel-Efficient Driving Method based on Slope and Length of Uphill Freeway Section (고속도로 오르막 구간의 경사도와 길이에 따른 연료 효율적 주행방법 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • In 2011, greenhouse gas emissions of transport sector were 85.04 million $tonCO_2eq$ and road emissions accounted for 95% of total emissions in the transport sector. There are few innovative technologies to reduce greenhouse gas emissions aside from eco-driving education and public relation program. Therefore, this paper focused on analyzing optimal acceleration by certain road grades and suggested fuel-efficient driving method for various uphill sections. Scenarios were established by driving modes. Speed profiles were generated by scenarios and speed variations. Each speed profile applied to Comprehensive Modal Emission Model and then each fuel consumption was estimated. Driving mode and speed variation that minimized fuel consumption were driven according to grade percent and uphill distance. When driving in the eco-friendly mode of the driving and speed variation, reduction rate of fuel consumption was evaluated by comparison between eco-driving and cruise control mode. When a vehicle drove under eco-driving mode at 100kph, 90kph and 80kph on uphill road, fuel consumptions were reduced by 33.9%, 30.8% and 5.3%, respectively.

Magnetic Levitation Control through the Introduction of Bogie Pitch Motion into a Control Law (대차 피치운동을 반영한 흡인식 자기부상제어)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Jo, Jeong-Min;Lim, JaeWon;Han, Hyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • The uneven reaction surface profile facing the lift magnets in attractive Maglev vehicles naturally brings about pitch motion of the bogie. In particular, in the placement configuration of the long stator of the linear synchronous motor (LSM) on the track for high-speed propulsion, surface irregularities and the offsets between the stator packs create measurable airgaps, i.e., the clearance between the magnet and the stator, with discontinuously extreme values, resulting in bogie pitch motion. This occurs because the airgap velocities and accelerations derived by the differentiations of the measured air-gaps are used to determine the voltages applied to the magnets. This paper incorporates bogie pitch motion into a control law for each magnet controller to reduce the variations in both the airgap and the pitch angle. The effectiveness of the proposed method is analyzed using a full-scale Maglev vehicle running over a test track.

Power Consumption Modeling and Analysis of Urban Unmanned Aerial Vehicles Using Deep Neural Networ (심층신경망을 활용한 도심용 무인항공기의 전력소모 예측 모델링 및 분석)

  • Minji, Kim;Donkyu, Baek
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • As the range of use of urban unmanned aerial vehicles (UAV) expands, it is necessary to operate UAVs efficiently because of its limited battery capacity. For this, it is required to find the optimal flight profile with various simulations. Therefore, it is important to predict the power and energy consumption of the UAV battery. In this paper, we analyzed the relationship between the speed and acceleration of the UAV and power consumption during the flight. Then, we derived a linear model, which is easily utilized. In addition, we also derived an accurate power consumption model based on deep neural network learning. To find the efficient model, we used learning data as 1) the GPS 3-axis velocity and acceleration data, 2) the IMU 3-axis velocity only, and 3) the IMU 3-axis velocity and acceleration data. The final model shows 5.86% error rate for power consumption and 1.50% error rate for the cumulative energy consumption.

CHARACTERIZATION OF GEOTECHNICAL SITES BY MULTI-CHANNEL ANALSIS OF SURFACE WAVES(MCASW) (지표층의 탄성계수 측정을 위한 새로운 탄성파 방법)

  • 박춘병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.15.2-22
    • /
    • 1995
  • Evaluating stiffness of near-surface materials has been one of the critically important tasks in many civil engineering works. It is the main goal of geotechnical characterization. The so-called deflection-response method evaluates the stiffness by measuring stress-strain behavior of the materials caused by static or dynamic load. This method, however, evaluates the overall stiffness and the stiffness variation with depth cannot be obtained. Furthermore, evaluation of a large-area geotechnical site by this method can be time-consuming, expensive, and damaging to many surface points of the site. Wave-propagation method, on the other hand, measures seismic velocities at different depths and stiffness profile (stiffness change with depth) can be obtained from the measured velocity data. The stiffness profile is often expressed by shear-wave (S-wave) velocity change with depth because S-wave velocity is proportional to the shear modulus. that is a direct indicator of stiffiiess. The crosshole and downhole method measures the seismic velocity by placing sources and receivers (geophones) at different depths in a borehole. Requirement of borehole installation makes this method also time-consuming, expensive, and damaging to the sites. Spectral-Analysis-of-Surface-Waves (SASW) method places both source and receivers at the surface, and records horizontally-propagating surface waves. Based upon the theory of surfacewave dispersion, the seismic velocities at different depths are calculated by analyzing the recorded surface-wave data. This method can be nondestructive to the sites. However, because only two receivers are used, the method requires multiple measurements with different field setups and, therefore, the method often becomes time-consuming and labor-intensive. Furthermore. the inclusion of noise wavefields cannot be handled properly, and this may cause the results by this method inaccurate. When multi-channel recording method is employed during the measurement of surface-waves, there are several benefits. First, usually single measurement is enough because multiple number (twelve or more) of receivers are used. Second, noise inclusion can be detected by coherency checking on the multi-channel data and handled properly so that it does not decrease the accuracy of the result. Third, various kinds of multi-channel processing techniques can be applied to f1lter unwanted noise wavefields and also to analyze the surface-wavefields more accurately and efficiently. In this way, the accuracy of the result by the method can be significantly improved. Fourth, the entire system of source, receivers, and recording-processing device can be tied into one unit, and the unit can be pulled by a small vehicle, making the survey speed very fast. In all these senses, multi-channel recording of surface waves is best suited for a routine method for geotechnical characterization in most of civil engineering works.

  • PDF