• 제목/요약/키워드: Vehicle interior noise

검색결과 191건 처리시간 0.023초

Mahalanobis Distance 를 이용한 차량 D 단 소음의 음질 평가 (Sound Quality Evaluation of the Level D Noise for the vehicle using Mahalanobis Distance)

  • 박상길;박원식;심현진;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.311-317
    • /
    • 2007
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.

  • PDF

MTS기법을 이용한 차량 D단 소음의 음질 평가 및 음질 등급화 구축 (Sound Quality Evaluation and Grade Construction of the Level D Noise for the Vehicle Using MTS)

  • 박상길;박원식;심현진;이정윤;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.393-399
    • /
    • 2008
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.

자동차 인테리어 모듈의 BSR 소음과 음질 특성 연구 (A Study on BSR Noise and Sound Quality Property for Vehicle Interior Module)

  • 신수현;정철웅;정성수;강대환
    • 한국소음진동공학회논문집
    • /
    • 제22권6호
    • /
    • pp.550-555
    • /
    • 2012
  • Among the various elements affecting a customer's evaluation of automobile quality, buzz, squeak and rattle(BSR) have been considered to be major factors. In most vehicle manufacturers, the BSR problems are solved by find-fix method with the vehicle road test, mainly due to various excitation sources, complex generation mechanism and subjective response. To systematically tackle the BSR problems in early stage of the vehicle development cycle, these difficulties should be resolved. The aim of the present paper is to characterize the sound quality property of BSR noise that can be used to assess the subjective responses to BSR. The four sound metrics from Zwicker's sound quality parameter are computed for the signals recorded for eight BSR noise source regions localized by using the acoustic-field visualized results. Then, the jury test of BSR noise are performed. On the basis of the computed sound metrics and jury test result is evaluated to represent the harshness of BSR noise. It is expected that the developed BSR measuring system and sound quality properties can be used to reduce the automotive interior BSR noise in terms of subjective levels as well as objective levels.

제진재의 최적배치를 이용한 차량공조시스템의 음질평가 (Sound Quality Evaluation for the Vehicle HVAC System Using Optimum Layout of Damping material)

  • 황동건;아미누딘 빈 아부;이정윤;오재응;유동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.629-633
    • /
    • 2005
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. In previous study, we have developed to verify identification of source for the vehicle HVAC system through multiple-dimensional spectral analysis. Also we carried out objective assessments on the vehicle HVAC noises and subjective assessments have been already performed with 30 subjects. In this study, the linear regression models were obtained for the subjective evaluation and the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Appropriation of regression model is necessary to $R^2$ value and F-value. And testing for regression model is necessary to Independence, Homoscedesticity and Normality. Also we selected optimum layout of damping material using Taguchi method. As a result of application, sound quality is improved by more quiet, powerful, expensive, smooth.

  • PDF

RLS 알고리즘을 이용한 승용차 내 능동소음제어의 개선 (Improvement of active nose control in vehicle interior using a RLS algorithm)

  • 김영욱;이윤희;김기두
    • 전자공학회논문지S
    • /
    • 제34S권12호
    • /
    • pp.106-113
    • /
    • 1997
  • While driving, the low frequency interior noise below 200Hz causes the main component that irritates the auditory acoustic sense. But these passive control methods bring out increment in cost and weight of the vehicle and result in low efficiency. Recently, various ANC(Active Noise Control) methos to suppress the low frequency noise began to launch into application. In this study, we implemented the active noise control system for passenger vehicle to cancel the engine booming noise using DSP-based control unit, 4 micorphones, and 2 speakers. We used MEFX-LMS (Multiple Error Filtered X-Least Mean Square) algorithm since it can be easily implemented in real time. Also, MEFX-RLS algorithm was taken to enhance the suppression of the harmonic components of the engine booming noise inspite of its computational complexity. The performance of two adaptive algorithms were analyzed with experimental resutls.

  • PDF

승용차 차실모델의 진동 및 소음특성에 관한 연구 (A Study on the vibration and noise characteristics of vehicle compartment model)

  • 김석현
    • 산업기술연구
    • /
    • 제9권
    • /
    • pp.87-99
    • /
    • 1989
  • It is desirable to predict the noise and vibration problems of a passenger car in its design stage for a better ride quality. Dominant frequencies of the noise inside a car range from about 50 Hz to 300 Hz and these are frequently caused by the coupling of the acoustic normal modes of the compartment cavity and structural modes of the body. In this paper, car interior noise problem is investigated in view of vibration-acoustic modes coupling and numerical simulation is performed on the interior noise. In the simulation, experimental modal data of the vehicle structure are utilized to improve the accuracy of the analysis. The results are in good agreement with those of experiment on a half scaled vehicle compartment model. Especially, strongly coupled modes can be predicted, which give useful informations to solve noise problems of real car at design stage.

  • PDF

다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측 (Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-dimensional Spectral Analysis Method)

  • 박상길;강귀현;황성욱;오기석;노국희;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1206-1212
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측 (Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-Dimensional Spectral Analysis Method)

  • 박상길;강귀현;황성욱;오기석;노국희;오재응
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

  • PDF

고속철도 차량의 실내소음 해석: SEA 응용 (Analysis of Interior Noise of High-Speed Train via SEA)

  • 김태민;김정태;김정수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.447-453
    • /
    • 2009
  • The interior noise of the High Speed Train(HST) is analyzed by applying the statistical energy analysis (SEA) method. The interior of each vehicle is divided lengthwise into nine cavities. Since the rolling noise and aerodynamics noise are expected to be dominant noise sources, they are treated as the noise sources in the model. To further simplify the model, curtains and seats are excluded. The simulation runs involving one-car, three-car and five-car trains are conducted. The maximum predicted noise level is 98.4dB. The results also show that the predicted noise levels are within 0.23% of each other. The results imply that it is not necessary to estimate the interior noise of the train by constructing multiple-car train models. The noise estimate based on just one-car train can be optimal with respect to the computational effort and modeling time.

  • PDF

승용차량용 연료탱크 슬로싱 현상에 대한 실험적 고찰 및 평가 방법에 대한 연구 (Experimental Study and Evaluation Method for Sloshing Noise of Fuel Tank on Passenger Vehicle)

  • 안세진;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.444-451
    • /
    • 2014
  • The signal patterns of slosh noise produced by the fuel tank of a passenger vehicle are characterized by analyzing vehicle interior noise, fuel tank vibration, and near-field noise radiated from the fuel tank. This paper also shows the noise transfer path analysis results performed from the fuel tank to the vehicle inside. On top of them, physical index is described, demonstrating a good correlation with subjective feeling of slosh noise. It is essential to identify the main noise transfer paths for redesigning of the fuel tank system aiming at reducing slosh noise and also helpful to apply physical index in evaluating and reducing this noise. It is found that structure-borne path is the main root of slosh noise and a value reveals a good correlation with subjective feeling.