• Title/Summary/Keyword: Vehicle information recognition

Search Result 373, Processing Time 0.047 seconds

Lane Positioning in Highways Based on Road-sign Tracking by Kalman Filter (칼만필터 기반의 도로표지판 추적을 이용한 차량의 횡방향 위치인식)

  • Lee, Jaehong;Kim, Hakil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.50-59
    • /
    • 2014
  • This paper proposes a method of localization of vehicle especially the horizontal position for the purpose of recognizing the driving lane. Through tracking road signs, the relative position between the vehicle and the sign is calculated and the absolute position is obtained using the known information from the regulation for installation. The proposed method uses Kalman filter for road sign tracking and analyzes the motion using the pinhole camera model. In order to classify the road sign, ORB(Oriented fast and Rotated BRIEF) features from the input image and DB are matched. From the absolute position of the vehicle, the driving lane is recognized. The Experiments are performed on videos from the highway driving and the results shows that the proposed method is able to compensate the common GPS localization errors.

EEG-based Customized Driving Control Model Design (뇌파를 이용한 맞춤형 주행 제어 모델 설계)

  • Jin-Hee Lee;Jaehyeong Park;Je-Seok Kim;Soon, Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2023
  • With the development of BCI devices, it is now possible to use EEG control technology to move the robot's arms or legs to help with daily life. In this paper, we propose a customized vehicle control model based on BCI. This is a model that collects BCI-based driver EEG signals, determines information according to EEG signal analysis, and then controls the direction of the vehicle based on the determinated information through EEG signal analysis. In this case, in the process of analyzing noisy EEG signals, controlling direction is supplemented by using a camera-based eye tracking method to increase the accuracy of recognized direction . By synthesizing the EEG signal that recognized the direction to be controlled and the result of eye tracking, the vehicle was controlled in five directions: left turn, right turn, forward, backward, and stop. In experimental result, the accuracy of direction recognition of our proposed model is about 75% or higher.

A Study on the Implement of Image Recognition the Road Traffic Safety Information Board using Nearest Neighborhood Decision Making Algorithm (최근접 이웃 결정방법 알고리즘을 이용한 도로교통안전표지판 영상인식의 구현)

  • Jung Jin-Yong;Kim Dong-Hyun;Lee So-Haeng
    • Management & Information Systems Review
    • /
    • v.4
    • /
    • pp.257-284
    • /
    • 2000
  • According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.

  • PDF

Semantic-oriented Error Correction for Spoken Query Processing (음성 질의 처리를 위한 의미 기반 오류 수정)

  • Jeong Minwoo;Kim Byeongchang;Lee Gary Geunbae
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.153-156
    • /
    • 2003
  • Voice input is often required in many new application environments such as telephone-based information retrieval, car navigation systems, and user-friendly interfaces, but the low success rate of speech recognition makes it difficult to extend its application to new fields. Popular approaches to increase the accuracy of the recognition rate have been researched by post-processing of the recognition results, but previous approaches were mainly lexical-oriented ones in post error correction. We suggest a new semantic-oriented approach to correct both semantic level and lexical errors, which is also more accurate for especially domain-specific speech error correction. Through extensive experiments using a speech-driven in-vehicle telematics information application, we demonstrate the superior performance of our approach and some advantages over previous lexical-oriented approaches.

  • PDF

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm (Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식)

  • Park, SeungHyun;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • This paper proposes an effective algorithm of Korean license plate recognition. By applying Haar-like feature and Canny edge detection on a captured vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are classified using neural networks trained by backpropagation algorithm to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Head/Rear Lamp Detection for Stop and Wrong Way Vehicle in the Tunnel (터널 내 정차 및 역주행 차량 인식을 위한 전조등과 후미등 검출 알고리즘)

  • Kim, Gyu-Yeong;Do, Jin-Kyu;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.601-602
    • /
    • 2011
  • In this paper, we propose head/rear lamp detection algorithm for stopped and wrong way vehicle recognition. It is shown that our algorithm detected vehicles based on the experimental analysis about the color information of vehicle's lamps. The simulation results show the detection rate about stopped and wrong way vehicles is achieved over 94% and 96% in the tunnel HD(High Definition) video image.

  • PDF

Study on Vehicle Haptic-Seat for the Driving Information Transfer to Driver for the Elderly (고령운전자 운전정보전달을 위한 차량용 햅틱시트 연구)

  • Oh, S.Y.;Kim, K.T.;Yu, C.H.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.151-160
    • /
    • 2014
  • In this study, the effect of the automotive haptic-seat technology which can transmit the driving information by the vibro-stimulus from the seat was investigated to overcome previous system's limitation relied on the visual and audial method and to help handicap driving. A prototype haptic seat cover with 30 coin-type motors and driver module were developed for this sake. In an experiment of seat vibration stimulation being performed under virtual driving situation by targeting the elderly aged over 65 years old, average score of test subjects for total vibration recognition was 3.5/4 points and recognition rate of 87.5% was represented. In addition, a result that all the test subjects totally recognized overspeed warning signal of 4 times was represented. As a result of statistical analysis for vibration recognition score by each group depending on TMT score, a significant difference was not found and a result that tactile function of which vibration is recognized even by the aged whose visual, perceptional function is declined showed an equal ability was obtained.. In this study it was shown that the seat vibration stimulus could be used to transfer the old drivers' information while driving.

  • PDF

LATERAL CONTROL OF AUTONOMOUS VEHICLE USING SEVENBERG-MARQUARDT NEURAL NETWORK ALGORITHM

  • Kim, Y.-B.;Lee, K.-B.;Kim, Y.-J.;Ahn, O.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2002
  • A new control method far vision-based autonomous vehicle is proposed to determine navigation direction by analyzing lane information from a camera and to navigate a vehicle. In this paper, characteristic featured data points are extracted from lane images using a lane recognition algorithm. Then the vehicle is controlled using new Levenberg-Marquardt neural network algorithm. To verify the usefulness of the algorithm, another algorithm, which utilizes the geometric relation of a camera and vehicle, is introduced. The second one involves transformation from an image coordinate to a vehicle coordinate, then steering is determined from Ackermann angle. The steering scheme using Ackermann angle is heavily depends on the correct geometric data of a vehicle and a camera. Meanwhile, the proposed neural network algorithm does not need geometric relations and it depends on the driving style of human driver. The proposed method is superior than other referenced neural network algorithms such as conjugate gradient method or gradient decent one in autonomous lateral control .

Development of an Integrated Sensor Module for Terrain Recognition at Disaster Sites (재난재해 현장의 지형인지를 위한 통합 센서 모듈 개발)

  • Seo, Myoung Kook;Yoon, Bok Joong;Shin, Hee Young;Lee, Kyong Jun
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.9-14
    • /
    • 2020
  • A special purpose machine with two manipulators and quadruped crawler system is being developed to work at disaster sites where it is intended to quickly respond in the initial stages after the event. In this study, a terrain recognition module is developed so that the above special purpose machine can quickly obtain ground information to help choose its path while recognizing objects in its way, this is intended to enhance the remote driver's limited situational awareness. Terrain recognition modules were developed for two tasks (real-time path guidance, precision terrain measurements). The real-time path guidance analyzes terrain and obstacles while moving, while the precision terrain measurement feature provides more accurate terrain information by precisely measuring the ground in front of the vehicle while stationary. In this study, an air-cooled sensor protection module was developed so that the terrain recognition module can continue its vital tasks in the event of exposure to foreign substances, including scattered dust, mist and rainfall, as well as high temperatures.